精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)是定义在[a-1,2a]上的偶函数,且当x>0时,f(x)单调递增,则关于x的不等式f(x-1)>f(a)的解集为[$\frac{1}{3}$,$\frac{2}{3}$)∪($\frac{4}{3}$,$\frac{5}{3}$].

分析 根据偶函数的性质求得a的值,再根据当x>0时,f(x)单调递增,可得函数f(x)在(-∞,0)上单调递减,故由不等式可得$\left\{\begin{array}{l}{x-1<-a或x-1>a}\\{-\frac{2}{3}≤x-1≤\frac{2}{3}}\end{array}\right.$,由此求得x的范围.

解答 解:∵函数f(x)是定义在[a-1,2a]上的偶函数,
∴a-1+2a=0,求得a=$\frac{1}{3}$,故函数的定义域为[-$\frac{2}{3}$,$\frac{2}{3}$].
∵当x>0时,f(x)单调递增,故函数f(x)在(-∞,0)上单调递减.
由关于x的不等式f(x-1)>f(a),可得$\left\{\begin{array}{l}{x-1<-a或x-1>a}\\{-\frac{2}{3}≤x-1≤\frac{2}{3}}\end{array}\right.$,求得$\frac{1}{3}$≤x<$\frac{2}{3}$,或$\frac{4}{3}$<x≤$\frac{5}{3}$,
故不等式f(x-1)>f(a)的解集为[$\frac{1}{3}$,$\frac{2}{3}$)∪($\frac{4}{3}$,$\frac{5}{3}$],
故答案为:[$\frac{1}{3}$,$\frac{2}{3}$)∪($\frac{4}{3}$,$\frac{5}{3}$].

点评 本题主要考查函数的定义域,函数的奇偶性和单调性的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.(1-2x)5(1+3x)4的展开式中含x项的系数是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.函数f(x)=$\sqrt{\frac{2-x}{x-1}}$的定义域为集合A,关于x的不等式${3^{2ax}}<{3^{a+x}}(a>\frac{1}{2})$的解集为B,求使A∩B=A的实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某地拟模仿图(1)建造一座大型体育馆,其设计方案侧面的外轮廓线如图(2)所示:曲线AB是以点E为圆心的圆的一部分,其中E(0,t)曲线BC是抛物线y=-ax2+30(a>0)的一部分;CD⊥AD,且CD恰好等于圆E的半径.
(1)若要求CD=20米,AD=(10$\sqrt{3}$+30)米,求t与a值;
(2)当0<t≤10时,若要求体育馆侧面的最大宽度DF不超过45米,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ax+x2-xlna(a>0且a≠1);
(1)求证:函数f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增.
(2)当a>1时,若存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1(e是自然对数的底数),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.先观察不等式(a${\;}_{1}^{2}$+a${\;}_{2}^{2}$)(b${\;}_{1}^{2}$+b${\;}_{2}^{2}$)≥(a1b1+a2b22(a1、a2、b1、b2∈R)的证明过程:设平面向量$\overrightarrow{α}$=(a1,b1),$\overrightarrow{β}$=(a2,b2),则|$\overrightarrow{α}$|=$\sqrt{{a}_{1}^{2}+{b}_{1}^{2}}$,|$\overrightarrow{β}$|=$\sqrt{{a}_{2}^{2}+{b}_{2}^{2}}$,$\overrightarrow{α}$•$\overrightarrow{β}$=a1a2+b1b2
∵|$\overrightarrow{α}$•$\overrightarrow{β}$|≤|$\overrightarrow{α}$|•|$\overrightarrow{β}$|,
∴|a1a2+b1b2|≤$\sqrt{{a}_{1}^{2}{+b}_{1}^{2}}$•$\sqrt{{a}_{2}^{2}+{b}_{2}^{2}}$,
∴(a1a2+b1b22≤(a${\;}_{1}^{2}$+b${\;}_{1}^{2}$)(a${\;}_{2}^{2}$+b${\;}_{2}^{2}$),
再类比证明:(a${\;}_{1}^{2}$+b${\;}_{1}^{2}$+c${\;}_{1}^{2}$)(a${\;}_{2}^{2}$+b${\;}_{2}^{2}$+c${\;}_{2}^{2}$)≥(a1a2+b1b2+c1c22

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数y=x3-3x在[-1,2]上的最小值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知(3x-1)7=a0x7+a1x6+…+a6x+a7,则a0+a2+a4+a6=8256.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=-x3+x2+bx+c,当x=$\frac{2}{3}$时,函数f(x)有极大值$\frac{4}{27}$.
(Ⅰ)求实数b、c的值;
(Ⅱ)若存在x0∈[-1,2],使得f(x0)≥3a-7成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案