分析 (1)求导数,利用导数的正负,可求函数f(x)单调区间;
(2)f(x)的最大值减去f(x)的最小值大于或等于e-1,由单调性知,f(x)的最大值是f(1)或f(-1),最小值f(0)=1,由f(1)-f(-1)的单调性,判断f(1)与f(-1)的大小关系,再由f(x)的最大值减去最小值f(0)大于或等于e-1求出a的取值范围.
解答 解:(1)证明:函数f(x)的定义域为R,f'(x)=axlna+2x-lna=2x+(ax-1)lna.
令h(x)=f'(x)=2x+(ax-1)lna,h'(x)=2+axln2a,
当a>0,a≠1时,h'(x)>0,所以h(x)在R上是增函数,
又h(0)=f'(0)=0,所以,f'(x)>0的解集为(0,+∞),f'(x)<0的解集为(-∞,0),
故函数f(x)的单调增区间为(0,+∞),单调减区间为(-∞,0);
(2)因为存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1成立,
而当x∈[-1,1]时|f(x1)-f(x2)|≤f(x)max-f(x)min,
所以只要f(x)max-f(x)min≥e-1,
又因为x,f'(x),f(x)的变化情况如下表所示:
| x | (-∞,0) | 0 | (0,+∞) |
| f'(x) | - | 0 | + |
| f(x) | 减函数 | 极小值 | 增函数 |
点评 本题考查了基本函数导数公式,利用导数研究函数的单调性及利用导数求闭区间上函数的最值.属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{x^2}{9}-\frac{y^2}{9}=1$ | B. | $\frac{y^2}{9}-\frac{x^2}{9}=1$ | C. | $\frac{y^2}{18}-\frac{x^2}{18}=1$ | D. | $\frac{x^2}{18}-\frac{y^2}{18}=1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 是否需要志愿者 性别 | 男 | 女 |
| 需要 | 40 | 30 |
| 不需要 | 160 | 270 |
| P(K2≥k) | 0.05 | 0.01 | 0.001 |
| k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2ab-1-a2b2≥0 | B. | (a2-1)(b2-1)≥0 | ||
| C. | $\frac{(a+b)2}{2}$-1-a2b2≥0 | D. | a2+b2-1-$\frac{{a}^{4}+{b}^{4}}{2}$≤0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com