精英家教网 > 高中数学 > 题目详情
19.要证:a2+b2-1-a2b2≥0,只要证明(  )
A.2ab-1-a2b2≥0B.(a2-1)(b2-1)≥0
C.$\frac{(a+b)2}{2}$-1-a2b2≥0D.a2+b2-1-$\frac{{a}^{4}+{b}^{4}}{2}$≤0

分析 将左边因式分解,即可得出结论.

解答 解:要证:a2+b2-1-a2b2≥0,只要证明(a2-1)(1-b2)≥0,
只要证明(a2-1)(b2-1)≥0.
故选:B.

点评 综合法(由因导果)证明不等式、分析法(执果索因)证明不等式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知a>0,函数$f(x)=-2asin({2x+\frac{π}{6}})+2a+b$,且-5≤f(x)≤3.
(1)求常数a,b的值;
(2)设$g(x)=f({x+\frac{π}{2}})$且lgg(x)>0,求g(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ax+x2-xlna(a>0且a≠1);
(1)求证:函数f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增.
(2)当a>1时,若存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1(e是自然对数的底数),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数y=x3-3x在[-1,2]上的最小值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f(x)=x3+2x2-4x+5
(1)求函数f(x)的单调区间;
(2)求f(x)在[-3,4]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知(3x-1)7=a0x7+a1x6+…+a6x+a7,则a0+a2+a4+a6=8256.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知a,b∈R,a2+b2=4,求3a+2b的取值范围为(  )
A.(-∞,4]B.$[-2\sqrt{13},2\sqrt{13}]$C.[4,+∞)D.(-∞,2$\sqrt{13}$]∪[2$\sqrt{13}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若c=acosB,b=asinC,则△ABC是(  )
A.等腰三角形B.等腰直角三角形C.直角三角形D.等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若(2+i)×(1-i)=a+bi,a,b∈R,则a+b=(  )
A.-2B.2C.3D.4

查看答案和解析>>

同步练习册答案