精英家教网 > 高中数学 > 题目详情
14.已知f(x)=x3+2x2-4x+5
(1)求函数f(x)的单调区间;
(2)求f(x)在[-3,4]上的最值.

分析 (1)令f'(x)>0,得函数f(x)的单调增区间;令f'(x)<0,得函数f(x)的单调减区间;
(2)判断函数的单调性,求出函数的极值以及端点值.由此能求出函数在[-3,4]上的最值.

解答 解:(1)f(x)=x3+2x2-4x+5,
可得f'(x)=3x2+4x-4=(3x-2)(x+2),
令f'(x)=(3x-2)(x+2)>0,
得x<-2或x>$\frac{2}{3}$,
所以函数f(x)的单调增区间为(-∞,-2),($\frac{2}{3}$,+∞);
令f'(x)=(3x-2)(x+2)<0,
得-2<x<$\frac{2}{3}$,
所以函数f(x)的单调减区间为(-2,$\frac{2}{3}$).
(2)x∈[-3,4],因为在[-3-2)上,f'(x)>0,
在(-2,$\frac{2}{3}$)上,f'(x)<0,x∈($\frac{2}{3}$,4],f'(x)>0;
所以f(x)在(-2,$\frac{2}{3}$)单调递减,x∈[-3-2),x∈($\frac{2}{3}$,4],函数是增函数,
f(-3)=8,f(-2)=13,f($\frac{2}{3}$)=$\frac{95}{27}$,f(4)=85
所以x=$\frac{2}{3}$时,[f(x)]min=f($\frac{2}{3}$)=$\frac{95}{27}$.
当x=4时,[f(x)]max=85.

点评 本题考查函数的单调区间和函数的最值的求法,解题时要认真审题,仔细解答,注意导数的性质的灵活运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.直线y=kx-1与椭圆$\frac{{x}^{2}}{7}$+$\frac{{y}^{2}}{t}$=1恒有公共点,则t的值可能是(  )
A.-1B.0.5C.2D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知向量$\overrightarrow a=(\frac{1}{2},\;\frac{1}{2}sinx+\frac{{\sqrt{3}}}{2}cosx)$和向量$\overrightarrow b=(1,f(x))$,且$\overrightarrow a∥\overrightarrow b$.
(1)求函数f(x)的最小正周期和最大值;
(2)已知△ABC的三个内角分别为A,B,C,若有$f(2A-\frac{π}{6})$=1,$BC=\sqrt{7}$,$sinB=\frac{{\sqrt{21}}}{7}$,求AC的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.曲线的极坐标方程ρ=4sinθ+2cosθ化为直角坐标方程为(x-1)2+(y-2)2=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某几何体的三视图如图所示,则该几何体的体积为(  )
A.12B.30C.32D.36

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.要证:a2+b2-1-a2b2≥0,只要证明(  )
A.2ab-1-a2b2≥0B.(a2-1)(b2-1)≥0
C.$\frac{(a+b)2}{2}$-1-a2b2≥0D.a2+b2-1-$\frac{{a}^{4}+{b}^{4}}{2}$≤0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=-x3+ax2+bx+c在(-∞,0)上是减函数,在(0,1)上是增函数,
(1)求b的值;
(2)曲线y=f(x)在点(2,2)处的切线斜率-1,求实数a,c的值;
(3)若a=2,讨论函数f(x)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知点P(x,y)在椭圆$\frac{x^2}{4}+{y^2}=1$上,则$\frac{3}{4}{x^2}+2x-{y^2}$的最大值为(  )
A.-2B.-1C.2D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在多面体ABCDEF中,四边形ABCD是正方形,H为BC中点,且FH⊥平面ABCD,EF∥AB,∠BFC=90°,AB=2,EF=1.
(Ⅰ)求证:FH∥平面EDB;
(Ⅱ)求二面角B-DE-C的大小;
(Ⅲ)求四面体B-DEF的体积.

查看答案和解析>>

同步练习册答案