精英家教网 > 高中数学 > 题目详情
20.等轴双曲线的一个焦点是F1(-6,0),则其标准方程为(  )
A.$\frac{x^2}{9}-\frac{y^2}{9}=1$B.$\frac{y^2}{9}-\frac{x^2}{9}=1$C.$\frac{y^2}{18}-\frac{x^2}{18}=1$D.$\frac{x^2}{18}-\frac{y^2}{18}=1$

分析 设出等轴双曲线的方程,把双曲线经过的点的坐标代入方程,求出待定系数,进而得到所求的双曲线的方程.

解答 解:设等轴双曲线方程为x2-y2=a(a>0),
化成标准方程:$\frac{{x}^{2}}{a}$-$\frac{{y}^{2}}{a}$=1,
由标准方程得:c=$\sqrt{2a}$=6,
∴a=18,
∴所求的等轴双曲线方程为x2-y2=18,
故选:D.

点评 本题考查利用待定系数法求双曲线的方程、考查双曲线三参数的关系c2=a2+b2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.在△ABC中,内角A,B,C所对的边分别为a,b,c,若ccosB-bcosC=$\frac{1}{3}$a.
(Ⅰ)证明:tanC=2tanB;
(Ⅱ)若a=3,tanA=$\frac{9}{7}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在棱长为a的正方体ABCD-A1B1C1D1中,E、F分别是AB、BC的中点,EF与BD交于点G,M为棱BB1上一点.
(1)证明:EF∥平面 A1C1D;
(2)当B1M:MB的值为多少时,D1M⊥平面 EFB1,证明之;
(3)求点D到平面 EFB1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图所示,在三棱柱ABC-A1B1C1中,底面△ABC为边长为6的等边三角形,点A1在平面ABC内的射影为△ABC的中心.
(1)求证:BC⊥BB1
(2)若AA1与底面ABC所成角为60°,P为CC1的中点,求直线BB1与平面AB1P所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知P={x|x<2},Q={x|x<a},若“x∈P”是“x∈Q”的必要不充分条件,则实数a的取值范围是(  )(  )
A.(-∞,2)B.(-∞,2]C.(2,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.(1-2x)5(1+3x)4的展开式中含x项的系数是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=2alnx+(a+1)x2+1.
(Ⅰ)当$a=-\frac{1}{2}$时,求函数f(x)的极值;
(Ⅱ)如果对任意x1>x2>0,总有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>{x_1}+{x_2}+4$,求实数a的取值范围;
(Ⅲ)求证:$ln(n+1)>\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}(n>1,n∈{N^*})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知a>0,函数$f(x)=-2asin({2x+\frac{π}{6}})+2a+b$,且-5≤f(x)≤3.
(1)求常数a,b的值;
(2)设$g(x)=f({x+\frac{π}{2}})$且lgg(x)>0,求g(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ax+x2-xlna(a>0且a≠1);
(1)求证:函数f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增.
(2)当a>1时,若存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1(e是自然对数的底数),求实数a的取值范围.

查看答案和解析>>

同步练习册答案