精英家教网 > 高中数学 > 题目详情
20.在△ABC中,内角A,B,C所对的边分别为a,b,c,若ccosB-bcosC=$\frac{1}{3}$a.
(Ⅰ)证明:tanC=2tanB;
(Ⅱ)若a=3,tanA=$\frac{9}{7}$,求△ABC的面积.

分析 (Ⅰ)利用正弦定理和三角形内角和等于π,两角和与差的公式进行化简,即可得到答案.
(Ⅱ)根据A+B+C=π⇒A=π-(B+C),利用(Ⅰ)的结论,化简,利用数形结合构造三角形的高,即可解决.

解答 解:(Ⅰ)∵ccosB-bcosC=$\frac{1}{3}$a.
∴sinCcosB-sinBcosC=$\frac{1}{3}$sinA
又∵A+B+C=π⇒A=π-(B+C)
∴sinCcosB-sinBcosC=$\frac{1}{3}$sin(B+C)
?sinCcosB-sinBcosC=$\frac{1}{3}$(sinBcosC+cosBsinC)
?tanC=2tanB;得证.
(Ⅱ)∵A=π-(B+C),tanA=$\frac{9}{7}$,
?-tan(B+C)=$\frac{9}{7}$,
?$-\frac{tanB+tanC}{1-tanB•tanC}=\frac{9}{7}$
由(Ⅰ)可知tanC=2tanB;
解得:tanB=$\frac{3}{2}$
过点A作AH∥BC与H,又tanC=2tanB,⇒BH=2CH
∵a=3,
∴BH=2
于是AH=BHtanB=3
${S}_{ABC}=\frac{1}{2}BC•AH=\frac{1}{2}×3×3=\frac{9}{2}$
故△ABC的面积为$\frac{9}{2}$.

点评 本题考查了正弦定理的运用和两角和与差的公式化简的能力.利用数形结合构造三角形的高来解三角形ABC的面积也是常用方法.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.数列{an}中,a1=1,an+1=-$\frac{1}{1+{a}_{n}}$,则a2016=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.一个直角三角形的三条边成等差数列,则它的最短边与最长边的比为(  )
A.4:5B.5:13C.3:5D.12:13

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=3+tcos\frac{π}{4}}\\{y=1-tsin\frac{π}{4}}\end{array}\right.$(t为参数),以O为极点,Ox正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4cosθ.
(1)求曲线C1的直角坐标方程;
(2)设C1与C2相交于A,B两点,求A,B两点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若实数x,y满足不等式组$\left\{\begin{array}{l}{x-y+5≥0}\\{x+y≥0}\\{x≤3}\end{array}\right.$,则2x-4y的最小值是(  )
A.10B.18C.-15D.-26

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知等腰梯形ABCD的顶点都在抛物线y2=2px(p>0)上,且AB∥CD,CD=2AB=4,∠ADC=60°,则点A到抛物线的焦点的距离是$\frac{{7\sqrt{3}}}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某地粮食需求量逐年上升,如表是部分统计数据:
年份(年)20022004200620082010
需求量
(万吨)
236246257276286
(1)利用所给数据求年需求量与年份之间的回归直线方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(2)利用(1)中所求出的直线方程预测该地2014年的粮食需求量.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.F(x)=(x3-2x)f(x)(x≠0)是偶函数,且f(x)不恒等于零,则f(x)为(  )
A.奇函数B.偶函数C.奇函数或偶函数D.非奇非偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.等轴双曲线的一个焦点是F1(-6,0),则其标准方程为(  )
A.$\frac{x^2}{9}-\frac{y^2}{9}=1$B.$\frac{y^2}{9}-\frac{x^2}{9}=1$C.$\frac{y^2}{18}-\frac{x^2}{18}=1$D.$\frac{x^2}{18}-\frac{y^2}{18}=1$

查看答案和解析>>

同步练习册答案