精英家教网 > 高中数学 > 题目详情
15.5名学生相约第二天去春游,本着自愿的原则,规定任何人可以“去”或“不去”,则第二天可能出现的不同情况的种数为(  )
A.10B.20C.32D.25

分析 可用分步计数原理去做,完成这件事,分成5步,每一步考虑一位学生的选择,最后再把各步方法数相乘即可.

解答 解;完成这件事,可以看成分步计数,分成5步,每一步考虑一位学生的选择.
∵任何人可以“去”或“不去”,都有两种选择,
∴每一步的方法数都是2,
共有25=32种方法.
故选:C.

点评 本题考查了分步计数原理的应用,做题时要认真审题,看清每一步的方法数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=-x3+x2+bx+c,当x=$\frac{2}{3}$时,函数f(x)有极大值$\frac{4}{27}$.
(Ⅰ)求实数b、c的值;
(Ⅱ)若存在x0∈[-1,2],使得f(x0)≥3a-7成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设A=[-1,1],B=[-2,2],函数f(x)=2x2+mx-1,
(1)设不等式f(x)≤0的解集为C,当C⊆(A∩B)时,求实数m的取值范围;
(2)若对任意x∈R,都有f(1-x)=f(1+x)成立,试求x∈B时,函数f(x)的值域;
(3)设g(x)=2|x-a|-x2-mx(a∈R),求f(x)+g(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)在数列{an}中,a1=2,an+1=3an+2,求数列{an}的通项公式an
(2)已知数列{an}的前n项和Sn=$\frac{2}{3}{a_n}$+$\frac{1}{3}$,求数列{an}的通项公式an
(3)已知数列{an}满足a1+3a2+32a3+…+3n-1an=n2+1,n∈N*,求数列{an}的通项公式an
(4)已知数列{an}满足an=$\left\{\begin{array}{l}{a_{n+1}}-2,n为奇数\\ \frac{1}{2}{a_{n+1}},n为偶数\end{array}$,且a1=1,求数列{an}的通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知a=2${\;}^{-\frac{1}{3}}$,b=$\frac{1}{\root{4}{2}}$,求a${\;}^{-\frac{1}{2}}$b$\sqrt{a{b}^{2}}$($\sqrt{{a}^{3}}$)2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知A={x|x-5<2x-4<5-x},B={x|x2-3x≤0,x∈R},C={x|2x2+mx-1<0,x∈R},若对任意x∈A∩B都有x∈C,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,四棱锥P-ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上.
(Ⅰ)求证:平面AEC⊥平面PDB;
(Ⅱ)当PD=2AB,且E为PB的中点,求二面角B-AE-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的长轴长为4,离心率为$\frac{{\sqrt{3}}}{2}$,右焦点为F.
(1)求椭圆C的方程;
(2)直线l与椭圆C相切于点P(不为椭圆C的左、右顶点),直线l与直线x=2交于点A,直线l与直线x=-2交于点B,请问∠AFB是否为定值?若不是,请说明理由;若是,请证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.阅读如图的程序框图,运行相应的程序,当输入N=6时,输出的s=(  )
A.62B.64C.126D.124

查看答案和解析>>

同步练习册答案