精英家教网 > 高中数学 > 题目详情
4.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的长轴长为4,离心率为$\frac{{\sqrt{3}}}{2}$,右焦点为F.
(1)求椭圆C的方程;
(2)直线l与椭圆C相切于点P(不为椭圆C的左、右顶点),直线l与直线x=2交于点A,直线l与直线x=-2交于点B,请问∠AFB是否为定值?若不是,请说明理由;若是,请证明.

分析 (1)由2a=4,离心率e=$\frac{c}{a}$=$\frac{{\sqrt{3}}}{2}$,b=$\sqrt{{a}^{2}-{c}^{2}}$即可求得a和b,即可求得椭圆C的方程;
(2)l的斜率为0时,∠AFB为直角,则∠AFB为定值$\frac{π}{2}$,当斜率不为0时,将切点代入椭圆方程,求得交点坐标,求得AF和BF的斜率kAF及kBF,即可求得kAF•kBF=-1,即可求得∠AFB为定值$\frac{π}{2}$.

解答 解:(1)2a=4,即a=2,e=$\frac{c}{a}$=$\frac{{\sqrt{3}}}{2}$,
∴c=$\sqrt{3}$,
b=$\sqrt{{a}^{2}-{c}^{2}}$=1,
∴椭圆方程为:$\frac{{x}^{2}}{4}+{y}^{2}=1$,
(2)证明:当l的斜率为0时,∠AFB为直角,则∠AFB为定值,为$\frac{π}{2}$,
当斜率不为0时,设切点为P(x0,y0),则l:$\frac{x{x}_{0}}{4}+y{y}_{0}=1$,
∴A(2,$\frac{1-\frac{{x}_{0}}{2}}{{y}_{0}}$),B(-2,$\frac{1+\frac{{x}_{0}}{2}}{{y}_{0}}$),
∴kAF•kBF=$\frac{1-\frac{{x}_{0}}{2}}{{(2-\sqrt{3})y}_{0}}$•$\frac{1+\frac{{x}_{0}}{2}}{(-2-\sqrt{3}){y}_{0}}$=$\frac{1-\frac{{x}_{0}^{2}}{4}}{-{y}_{0}^{2}}$=-1,
∴∠AFB为定值$\frac{π}{2}$.

点评 本题考查椭圆的标准方程,直线与椭圆的位置关系,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.如图是一几何体的直观图、正视图和俯视图.下列选项图中,按照画三视图的要求画出的该几何体的侧视图是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.5名学生相约第二天去春游,本着自愿的原则,规定任何人可以“去”或“不去”,则第二天可能出现的不同情况的种数为(  )
A.10B.20C.32D.25

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知实数a>0,b>0,且a2+3b2=3,若$\sqrt{5}$a+b≤m恒成立.
(1)求m的最小值;
(2)若2|x-1|+|x|≥$\sqrt{5}$a+b对a>0,b>0恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知f(x)=$\left\{\begin{array}{l}{0,x=0时}\\{|x+\frac{2}{x}|,x≠0时}\end{array}\right.$,则有关x的方程f2(x)+bf(x)+c=0有5个不等实根的充分条件是(  )
A.b<-2$\sqrt{2}$且c>0B.b<-2$\sqrt{2}$且c<0C.b<-2$\sqrt{2}$且c=0D.b≥-2$\sqrt{2}$且c=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.复数z满足z=(5+2i)2其中i为虚数单位,$\overline{z}$表示复数z的共轭复数.则在复平面上复数$\overline{z}$对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.f(x)=x(2016+lnx),若f′(x0)=2017,则x0=(  )
A.e2B.1C.ln2D.e

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在研究塞卡病毒(Zika virus)某种疫苗的过程中,为了研究小白鼠连续接种该种疫苗后出现Z症状的情况,做接种试验.试验设计每天接种一次,连续接种3天为一个接种周期.已知小白鼠接种后当天出现Z症状的概率为$\frac{1}{4}$,假设每次接种后当天是否出现Z症状与上次接种无关.
(Ⅰ)若出现Z症状即停止试验,求试验至多持续一个接种周期的概率;
(Ⅱ)若在一个接种周期内出现2次或3次Z症状,则这个接种周期结束后终止试验,试验至多持续3个周期.设接种试验持续的接种周期数为ξ,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若执行如图的程序框图,则输出的a值是(  )
A.2B.-$\frac{1}{3}$C.-$\frac{3}{2}$D.-2

查看答案和解析>>

同步练习册答案