精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=$\left\{\begin{array}{l}{x{\;}^{2},(x≤0)}\\{\sqrt{2-x{\;}^{2}},(x>0)}\end{array}\right.$则${∫}_{-1}^{\sqrt{2}}$f(x)dx=(  )
A.$\frac{π}{2}$-$\frac{1}{3}$B.$\frac{π}{2}$+$\frac{1}{3}$C.$\frac{π}{4}$+$\frac{1}{3}$D.$\frac{π}{4}$-$\frac{1}{3}$

分析 由${∫}_{-1}^{\sqrt{2}}$f(x)dx=${∫}_{0}^{\sqrt{2}}$$\sqrt{2-{x}^{2}}$dx+${∫}_{-1}^{0}$x2dx,分别根据定积分的几何意义和定积分的计算法则计算计算即可.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{x{\;}^{2},(x≤0)}\\{\sqrt{2-x{\;}^{2}},(x>0)}\end{array}\right.$,
∴${∫}_{-1}^{\sqrt{2}}$f(x)dx=${∫}_{0}^{\sqrt{2}}$$\sqrt{2-{x}^{2}}$dx+${∫}_{-1}^{0}$x2dx,
∵${∫}_{0}^{\sqrt{2}}$$\sqrt{2-{x}^{2}}$dx表示以原点为圆心,以$\sqrt{2}$为半径的圆的面积的四分之一,
∴${∫}_{0}^{\sqrt{2}}$$\sqrt{2-{x}^{2}}$dx=$\frac{1}{4}$π•2=$\frac{π}{2}$,
∴${∫}_{-1}^{\sqrt{2}}$f(x)dx=${∫}_{0}^{\sqrt{2}}$$\sqrt{2-{x}^{2}}$dx+${∫}_{-1}^{0}$x2dx=$\frac{π}{2}$+$\frac{1}{3}$x3|${\;}_{-1}^{0}$=$\frac{π}{2}$+$\frac{1}{3}$,
故选:B.

点评 本题考查了定积分的计算和定积分的几何意义,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.若f(x),g(x)定义域为R,f(x)是奇函数,g(x)是偶函数,且f(x)+g(x)=$\frac{1}{{x}^{2}-x+1}$,求f(x),g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.点P(x0,y0)为椭圆C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1外一点,l:$\frac{{x}_{0}x}{4}$+$\frac{{y}_{0}y}{3}$=1,则l与C的关系是(  )
A.相交B.相切C.相离D.相交或相切

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}的前n项和Sn=2nan+1 -3n2-4n,S3=15,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知在锐角△ABC中,已知∠B=$\frac{π}{3}$,|$\overrightarrow{AB}$-$\overrightarrow{AC}$|=2,则$\overrightarrow{AB}•\overrightarrow{AC}$的取值范围是(0,12).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在三棱柱ABC-A1B1C1中,AB⊥侧面BB1C1C,已知BB1=2,BC=1,∠BCC1=$\frac{π}{3}$,且异面直线A1C于B1C1所成角的大小为arccos$\frac{\sqrt{10}}{5}$,求:
(1)AB的长;
(2)三棱柱ABC-A1B1C1的侧面积和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设点P是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)上一点,F1、F2分别是双曲线的左、右焦点,且|PF1|-|PF2|=2,点P到双曲线的两条渐近线的距离之积为$\frac{4}{5}$,则双曲线的离心率为$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知某天城市A下雨的概率为0.5,城市S下雨的概率为0.4,两城市同时下雨的概率为0,则两城市都没有下雨的概率为(  )
A.0.2B.0.5C.0.9D.0.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.曲线y=2x,y=2-x及直线x=-1,x=1所围成的图形的面积是$\frac{1}{ln2}$.

查看答案和解析>>

同步练习册答案