精英家教网 > 高中数学 > 题目详情

【题目】在四棱锥P﹣ABCD中,各侧面是全等的等腰三角形,腰长为4且顶角为30°,底面是正方形(如图),在棱PB,PC上各有一点M,N,且四边形AMND的周长最小,点S从A出发依次沿四边形AM,MN,ND运动至点D,记点S行进的路程为x,棱锥S﹣ABCD的体积为V(x),则函数V(x)的图象是(

A.
B.
C.
D.

【答案】C
【解析】解:四棱锥P﹣ABCD中,各侧面是全等的等腰三角形,腰长为4且顶角为30°,
∴BC2=PB2+PC2﹣2PBPCcos30°=16+16﹣2×4×4× =32﹣16
∴底面正方形的面积s=32﹣16 ,h=xtan30°,
∴V(x)= sh= xtan30°,为线性函数,
∵四边形AMND的周长最小,正四棱锥侧面展开图如图所示,
∴正四棱锥侧面展开图,从A到D最短距离为直角三角形PAD的斜边为4
∴x≤4
故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】己知函数

(I)求函数的单调区间;

(II)设,已知函数上是增函数.

(1)研究函数上零点的个数;

(ii)求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若,求函数的极值;

(Ⅱ)若,,,使得),求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市在对高三学生的4月理科数学调研测试的数据统计显示,全市10000名学生的成绩服从正态分布,现从甲校100分以上(含100分)的200份试卷中用系统抽样的方法抽取了20份试卷来分析,统计如下:

(注:表中试卷编号

(1)列出表中试卷得分为126分的试卷编号(写出具体数据);

(2)该市又从乙校中也用系统抽样的方法抽取了20份试卷,将甲乙两校这40份试卷的得分制作了茎叶图(如图6),试通过茎叶图比较两校学生成绩的平均分及分散程度(均不要求计算出具体值,给出结论即可);

(3)在第(2)问的前提下,从甲乙两校这40名学生中,从成绩在140分以上(含140分)的学生中任意抽取3人,该3人在全市前15名的人数记为,求的分布列和期望.

(附:若随机变量服从正态分布,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn , 且a1+a3=10,S4=24.
(1)求数列{an}的通项公式;
(2)令Tn= ,求证:Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,则满足不等式 的实数m的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角△ABC中,a、b、c分别为∠A、∠B、∠C所对的边,且 a=2csinA.
(1)确定∠C的大小;
(2)若c= ,求△ABC周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列向量组中,能作为表示它们所在平面内所有向量的一组基底的是( )
A.=(0,0) =(1,﹣2)
B.=(﹣1,2) =(3,7)
C.=(3,5) =(6,10)
D.=(2,﹣3) =( ,﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(ex , lnx+k), =(1,f(x)), (k为常数,e是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与y轴垂直,F(x)=xexf′(x).
(1)求k的值及F(x)的单调区间;
(2)已知函数g(x)=﹣x2+2ax(a为正实数),若对任意x2∈[0,1],总存在x1∈(0,+∞),使得g(x2)<F(x1),求实数a的取值范围.

查看答案和解析>>

同步练习册答案