精英家教网 > 高中数学 > 题目详情

【题目】人口问题是当今世界各国普遍关注的问题.认识人口数量的变化规律,可以为有效控制人口增长提供依据.早在1798年,英国经济学家马尔萨斯(T.R.Malthus,1766—1834)就提出了自然状态下的人口增长模型: 其中x表示经过的时间, 表示x=0时的人口,r表示人口的平均增长率.

下表是1950―1959年我国人口数据资料:

如果以各年人口增长率的平均值作为我国这一时期的人口增长率,用马尔萨斯人口增长模型建立我国这一时期的具体人口增长模型,某同学利用图形计算器进行了如下探究:

由此可得到我国1950―1959年我国这一时期的具体人口增长模型为____________. (精确到0.001)

【答案】

【解析】由条件知是研究的1950年开始的人口变化,故当x=0时,y=55196..r为平均人口增长率,根据表格得到r=0.022.故得到

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数
(1)若曲线y=f(x)在点(e,f(e))处的切线与直线x﹣2=0垂直,求f(x)的单调区间(其中e为自然对数的底数);
(2)若对任意x1>x2>0,f(x1)﹣f(x2)<x1﹣x2恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (a<0). (Ⅰ)当a=﹣3时,求f(x)的单调递减区间;
(Ⅱ)若函数f(x)有且仅有一个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了普及环保知识,增强学生的环保意识,在全校组织了一次有关环保知识的竞赛.经过初赛、复赛,甲、乙两个代表队(每队3人)进入了决赛,规定每人回答一个问题,答对为本队赢得10分,答错得0分.假设甲队中每人答对的概率均为 ,乙队中3人答对的概率分别为 ,且各人回答正确与否相互之间没有影响,用ξ表示乙队的总得分. (Ⅰ)求ξ的分布列和数学期望;
(Ⅱ)求甲、乙两队总得分之和等于30分且甲队获胜的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥PABCD中,PD⊥底面ABCD,底面ABCD为正方形,PDDCFPB的中点.求证:

(1)DFAP.

(2)在线段AD上是否存在点G,使GF⊥平面PBC?若存在,说明G点的位置,并证明你的结论;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数yf(x)在定义域[11]上既是奇函数,又是减函数.

(1)求证:对任意x1x2[11],有[f(x1)f(x2)]·(x1x2)0

(2)f(1a)f(1a2)0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随机调查某社区80个人,以研究这一社区居民的休闲方式是否与性别有关,得到下面的数据表:

休闲方式
性别

看电视

运动

合计

男性

20

10

30

女性

45

5

50

合计

65

15

80


(1)将此样本的频率估计为总体的概率,随机调查3名在该社区的男性,设调查的3人是以运动为休闲方式的人数为随机变量X,求X的分布列和期望;
(2)根据以上数据,能否有99%的把握认为休闲方式与性别有关系?

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:K2= ),其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 f(x)=asinx﹣bcosx(a,b为常数,a≠0,x∈R)在x= 处取得最小值,则函数g(x)=f( ﹣x)是(
A.偶函数且它的图象关于点(π,0)对称
B.奇函数且它的图象关于点(π,0)对称
C.奇函数且它的图象关于点( ,0)对称
D.偶函数且它的图象关于点( ,0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a∈R,函数f(x)满足f(2x)=x2﹣2ax+a2﹣1.
(Ⅰ)求f(x)的解析式,并写出f(x)的定义域;
(Ⅱ)若f(x)在 上的值域为[﹣1,0],求实数a的取值范围.

查看答案和解析>>

同步练习册答案