精英家教网 > 高中数学 > 题目详情
(2012•陕西三模)(考生注意:请在下列三题中任选一题作答,如多做,则按所做的第一题评分)
A.对于实数x,y,若|x-1|≤2,|y-1|≤2,则|x-2y+1|的最大值
6
6

B.圆C:
x=1+
2
cosθ
y=1+
2
sinθ
(θ为参数)的极坐标方程为
ρ=2(sinθ+cosθ)
ρ=2(sinθ+cosθ)

C.如图,PC切圆O于点C,割线PAB经过圆心O,PC=4,PB=8,则S△OBC=
18
5
18
5
分析:A.根据绝对值不等式的性质可得|x-2y+1|≤|x-1|+2|y-2|+2,再由|x-1|≤1,|y-2|≤2可得≤|x-1|+2|y-2|+2≤6,由此求得|x-2y+1|的最大值.
B.消去θ,得出圆的普通方程为(x-1)2+(y-1)2=2,利用公式x=ρcosθ,y=ρsinθ代入整理即可.
C.设圆的半径等于 r,则由切割线定理可得 PC2=PB•PA,求出 r 的值,可得cos∠COP,从而得到cos∠COB,利用同角三角函数的基本关系得到sin∠COB的值,
由S△OBC=
1
2
 r2 sin∠COB求出结果.
解答:解:A∵|x-2y+1|=|(x-1)+2(y-1)|≤|x-1|+2|(y-2)+1|≤|x-1|+2|y-2|+2,
再由|x-1|≤1,|y-2|≤2可得|x-1|+2|y-2|+2≤1+2+2=5,
故|x-2y+1|的最大值为6,
故答案为:6.
B.圆C:
x=1+
2
cosθ
y=1+
2
sinθ
(θ为参数),消去θ,得出普通方程为(x-1)2+(y-1)2=2,
利用公式x=ρcosθ,y=ρsinθ,得极坐标方程为(ρcosθ-1)2+(ρsinθ-1)2=2,化简整理得出ρ=2(sinθ+cosθ)
故答案为:ρ=2(sinθ+cosθ)
C.设圆的半径等于r,则由切割线定理可得PC2=PB•PA,∴16=8(8-2r),
∴r=3. 故cos∠COP=
OC
OP
=
3
5
,∴cos∠COB=-
3
5

∴sin∠COB=
4
5
,则S△OBC
1
2
r2 sin∠COB=
18
5

故答案为:
18
5
点评:A.本题主要考查绝对值不等式的性质应用,式子的变形是解题的难点,属于基础题.B本题主要考查极坐标方程、参数方程及直角坐标方程的转化.普通方程化为极坐标方程关键是利用公式x=ρcosθ,y=ρsinθ,ρ=
x2+y2
.C本题主要考查切割线定理,求出圆的半径,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•陕西三模)已知f(x)=excosx,则此函数图象在点(1,f(1))处的切线的倾斜角为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•陕西三模)已知点A(-1,0)、B(1,0),P(x0,y0)是直线y=x+2上任意一点,以A、B为焦点的椭圆过点P.记椭圆离心率e关于x0的函数为e(x0),那么下列结论正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•陕西三模)已知函数f(x)=ex-1,g(x)=-x2+4x-3,若存在f(a)=g(b),则实数b的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•陕西三模)袋子中放有大小和形状相同的小球若干,其中标号为0的小球1个,标号为1的小球1个,标号为2 的小球n个,已知从袋子随机抽取1个小球,取到标号为2的小球的概率是
12

(Ⅰ)求n的值;
(Ⅱ)从袋子中不放回地随机抽取2个球,记第一次取出的小球标号为a,第二次取出的小球标号为b.
①记“a+b=2”为事件A,求事件A的概率;
②在区间[0,2]内任取2个实数x,y,求事件“x2+y2>(a-b)2恒成立”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•陕西三模)已知x与y之间的几组数据如下表:
X 0 1 2 3
y 1 3 5 7
则y与x的线性回归方程
y
=bx+a
必过(  )

查看答案和解析>>

同步练习册答案