精英家教网 > 高中数学 > 题目详情
已知
1
m
+
2
n
=1(m>0,n>0)
,当mn取得最小值时,直线y=-
2
x+2
与曲线
x|x|
m
+
y|y|
n
=1
交点个数为______.
由均值不等式
1=
1
m
+
2
n
≥2
1
m
1
n

当且仅当
1
m
=
2
n
时等号成立,
也就是
1
m
=
2
n
=
1
2

所以m=2,n=4.
x|x|
m
+
y|y|
n
=1

x|x|
2
+
y|y|
4
=1

①当x>0,y>0,
表示
x2
2
+
y2
4
=1
的椭圆;
②当x>0,y<0,
表示
x2
2
-
y2
4
=1
以x轴为实轴的双曲线;
③当x<0,y>0,
表示
y2
4
-
x2
2
=1
以y轴为实轴的双曲线;
④当x<0,y<0,
表示-
x2
2
-
y2
4
=1

因为左边恒≤0所以不可能=右边,
所以此时无解.
所以如图得到图象,
结合图象知直线y=-
2
x+2
与曲线
x|x|
m
+
y|y|
n
=1
交点个数是2个.
故答案为:2.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

若椭圆E1
x2
a21
+
y2
b21
=1
和椭圆E2
x2
a22
+
y2
b22
=1
满足
a2
a1
=
b2
b1
=m(m>0)
,则称这两个椭圆相似,m是相似比.
(Ⅰ)求过(2,
6
)
且与椭圆
x2
4
+
y2
2
=1
相似的椭圆的方程;
(Ⅱ)设过原点的一条射线l分别与(Ⅰ)中的两椭圆交于A、B两点(点A在线段OB上).
①若P是线段AB上的一点,若|OA|,|OP|,|OB|成等比数列,求P点的轨迹方程;
②求|OA|•|OB|的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
3
2
,以原点为圆心,椭圆C的短半轴长为半径的圆与直线x-y+2=0相切.
(1)求椭圆C的方程;
(2)已知点P(0,1),Q(0,2).设M,N是椭圆C上关于y轴对称的不同两点,直线PM与QN相交于点T,求证:点T在椭圆C上.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

抛物线y2=2px(p>0),其准线方程为x=-1,过准线与x轴的交点M做直线l交抛物线于A、B两点.
(Ⅰ)若点A为MB中点,求直线l的方程;
(Ⅱ)设抛物线的焦点为F,当AF⊥BF时,求△ABF的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(200个•陕西)已知椭圆C:
x2
2
+
y2
b2
=1
(个>b>0)的离心率为
3
,短轴一个端点到右焦点的距离为
3

(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l与椭圆C交于个、B两点,坐标原点O到直线l的距离为
3
2
,求△个OB面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过抛物线y2=4x的焦点作倾斜角为
π
3
的直线与抛物线交于点A、B,则|AB|=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点P在椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)上,F1、F2分别为椭圆C的左、右焦点,满足|PF1|=6-|PF2|,且椭圆C的离心率为
5
3

(Ⅰ)求椭圆C的方程;
(Ⅱ)若过点Q(1,0)且不与x轴垂直的直线l与椭圆C相交于两个不同点M、N,在x轴上是否存在定点G,使得
GM
GN
为定值.若存在,求出所有满足这种条件的点G的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C:y2=2px(p>0)的焦点为F,点K(-1,0)为直线l与抛物线C准线的交点.直线l与抛物线C相交于A,B两点,点A关于x轴的对称点为D.
(1)求抛物线C的方程;
(2)设
FA
FB
=
8
9
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,已知在?ABCD中,O1,O2,O3为对角线BD上三点,且BO1=O1O2=O2O3=O3D,连接AO1并延长交BC于点E,连接EO3并延长交AD于F,则AD∶FD等于(  )
A.19∶2B.9∶1
C.8∶1D.7∶1

查看答案和解析>>

同步练习册答案