ÈôÍÖÔ²E1£º
x2
a21
+
y2
b21
=1
ºÍÍÖÔ²E2£º
x2
a22
+
y2
b22
=1
Âú×ã
a2
a1
=
b2
b1
=m(m£¾0)
£¬Ôò³ÆÕâÁ½¸öÍÖÔ²ÏàËÆ£¬mÊÇÏàËƱȣ®
£¨¢ñ£©Çó¹ý£¨2£¬
6
)
ÇÒÓëÍÖÔ²
x2
4
+
y2
2
=1
ÏàËƵÄÍÖÔ²µÄ·½³Ì£»
£¨¢ò£©Éè¹ýÔ­µãµÄÒ»ÌõÉäÏßl·Ö±ðÓ루¢ñ£©ÖеÄÁ½ÍÖÔ²½»ÓÚA¡¢BÁ½µã£¨µãAÔÚÏ߶ÎOBÉÏ£©£®
¢ÙÈôPÊÇÏ߶ÎABÉϵÄÒ»µã£¬Èô|OA|£¬|OP|£¬|OB|³ÉµÈ±ÈÊýÁУ¬ÇóPµãµÄ¹ì¼£·½³Ì£»
¢ÚÇó|OA|•|OB|µÄ×î´óÖµºÍ×îСֵ£®
£¨¢ñ£©ÉèÓë
x2
4
+
y2
2
=1
ÏàËƵÄÍÖÔ²µÄ·½³Ì
x2
a2
+
y2
b2
=1
£®
ÔòÓÐ
2
a
=
2
b
4
a2
+
6
b2
=1
¡­£¨3·Ö£©
½âµÃa2=16£¬b2=8£®
ËùÇó·½³ÌÊÇ
x2
16
+
y2
8
=1
£®¡­£¨4·Ö£©
£¨¢ò£©¢Ùµ±ÉäÏßlµÄбÂʲ»´æÔÚʱA(0£¬¡À
2
)£¬B(0£¬¡À2
2
)
£¬
ÉèµãP×ø±êP£¨0£¬y0£©£¬Ôòy02=4£¬y0=¡À2£®¼´P£¨0£¬¡À2£©£®¡­£¨5·Ö£©
µ±ÉäÏßlµÄбÂÊ´æÔÚʱ£¬ÉèÆä·½³Ìy=kx£¬P£¨x£¬y£©
ÓÉA£¨x1£¬y1£©£¬B£¨x2£¬y2£©Ôò
y1=kx1
x21
4
+
y21
2
=1

µÃ
x21
=
4
1+2k2
y21
=
4k2
1+2k2

¡à|OA|=
2
1+k2
1+2k2
ͬÀí|OB|=
4
1+k2
1+2k2
¡­£¨7·Ö£©
ÓÖµãPÔÚlÉÏ£¬Ôòk=
y
x
£¬ÇÒÓÉx2+y2=
8(1+k2)
1+2k2
=
8(1+
y2
x2
)
1+2
y2
x2
=
8(x2+y2)
x2+2y2
£¬
¼´ËùÇó·½³ÌÊÇ
x2
8
+
y2
4
=1
£®
Ó֡ߣ¨0£¬¡À2£©ÊʺϷ½³Ì£¬
¹ÊËùÇóÍÖÔ²µÄ·½³ÌÊÇ
x2
8
+
y2
4
=1
£®¡­£¨9·Ö£©
¢ÚÓÉ¢Ù¿ÉÖª£¬µ±lµÄбÂʲ»´æÔÚʱ£¬|OA|•|OB|=
2
•2
2
=4
£¬µ±lµÄбÂÊ´æÔÚʱ£¬
|OA|•|OB|=
8(1+k2)
1+2k2
=4+
4
1+2k2
£¬
¡à4£¼|OA|•|OB|¡Ü8£¬¡­£¨11·Ö£©
×ÛÉÏ£¬|OA|•|OB|µÄ×î´óÖµÊÇ8£¬×îСֵÊÇ4£®¡­£¨12·Ö£©
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÒÑÖªÅ×ÎïÏßC£ºy2=2px£¨p£¾0£©ÉϺá×ø±êΪ1µÄµãMµ½Å×ÎïÏßC½¹µãFµÄ¾àÀë|MF|=2£®
£¨1£©ÊÔÇóÅ×ÎïÏßCµÄ±ê×¼·½³Ì£»
£¨2£©ÈôÖ±ÏßlÓëÅ×ÎïÏßCÏཻËùµÃµÄÏÒµÄÖеãΪ£¨2£¬1£©£¬ÊÔÇóÖ±ÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£ºµ¥Ñ¡Ìâ

ÒÑÖªµãM£¨
3
£¬0£©£¬ÍÖÔ²
x2
4
+y2=1ÓëÖ±Ïßy=k£¨x+
3
£©½»ÓÚµãA¡¢B£¬Ôò¡÷ABMµÄÖܳ¤Îª£¨¡¡¡¡£©
A£®4B£®8C£®12D£®16

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÔÚÖ±Ïßy=x-2ÉÏÊÇ·ñ´æÔÚµãP£¬Ê¹µÃ¾­¹ýµãPÄÜ×÷³öÅ×ÎïÏßy=
1
2
x2
µÄÁ½Ìõ»¥Ïà´¹Ö±µÄÇÐÏߣ¿Èô´æÔÚ£¬ÇóµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
¹ýµã(1£¬
q
2
)
£¬ÇÒÀëÐÄÂÊe=
1
2
£®
£¨¢ñ£©ÇóÍÖÔ²·½³Ì£»
£¨¢ò£©ÈôÖ±Ïßl£ºy=kx+m£¨k¡Ù0£©ÓëÍÖÔ²½»ÓÚ²»Í¬µÄÁ½µãM¡¢N£¬ÇÒÏ߶ÎMNµÄ´¹Ö±Æ½·ÖÏß¹ý¶¨µãG(
1
8
£¬0)
£¬ÇókµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÒÑÖªÍÖÔ²
x2
a2
+
y2
b2
=1(a£¾b£¾c£¾0£¬a2=b2+c2)
µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬ÈôÒÔF2ΪԲÐÄ£¬b-cΪ°ë¾¶×÷Ô²F2£¬¹ýÍÖÔ²ÉÏÒ»µãP×÷´ËÔ²µÄÇÐÏߣ¬ÇеãΪT£¬ÇÒ|PT|µÄ×îСֵ²»Ð¡ÓÚ
3
2
(a-c)
£®
£¨1£©ÇóÍÖÔ²µÄÀëÐÄÂÊeµÄÈ¡Öµ·¶Î§£»
£¨2£©ÉèÍÖÔ²µÄ¶Ì°ëÖ᳤Ϊ1£¬Ô²F2ÓëxÖáµÄÓÒ½»µãΪQ£¬¹ýµãQ×÷бÂÊΪk£¨k£¾0£©µÄÖ±ÏßlÓëÍÖÔ²ÏཻÓÚA£¬BÁ½µã£¬ÈôOA¡ÍOB£¬ÇóÖ±Ïßl±»Ô²F2½ØµÃµÄÏÒ³¤µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

£¨AÌ⣩Èçͼ£¬ÔÚÍÖÔ²
x2
a2
+
y2
8
=1£¨a£¾0£©ÖУ¬F1£¬F2·Ö±ðÊÇÍÖÔ²µÄ×óÓÒ½¹µã£¬B£¬D·Ö±ðΪÍÖÔ²µÄ×óÓÒ¶¥µã£¬AΪÍÖÔ²ÔÚµÚÒ»ÏóÏÞÄÚ»¡ÉϵÄÈÎÒâÒ»µã£¬Ö±ÏßAF1½»yÖáÓÚµãE£¬ÇÒµãF1£¬F2ÈýµÈ·ÖÏ߶ÎBD£®
£¨1£©ÈôËıßÐÎEBCF2ΪƽÐÐËıßÐΣ¬ÇóµãCµÄ×ø±ê£»
£¨2£©Éèm=
S¡÷AF1O
S¡÷AEO
£¬n=
S¡÷CF1O
S¡÷CEO
£¬Çóm+nµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£ºÌî¿ÕÌâ

Ë«ÇúÏß
x2
v
-
y2
ͼ6
=ͼ
µÄÓÒ½¹µãÊÇÅ×ÎïÏߵĽ¹µã£¬ÔòÅ×ÎïÏߵıê×¼·½³ÌÊÇ______£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£ºÌî¿ÕÌâ

ÒÑÖª
1
m
+
2
n
=1(m£¾0£¬n£¾0)
£¬µ±mnÈ¡µÃ×îСֵʱ£¬Ö±Ïßy=-
2
x+2
ÓëÇúÏß
x|x|
m
+
y|y|
n
=1
½»µã¸öÊýΪ______£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸