精英家教网 > 高中数学 > 题目详情
如图,在棱长为1的正方体AC1中,E、F分别为A1D1和A1B1的中点.
(1)求异面直线AF和BE所成的角的余弦值;
(2)求平面ACC1与平面BFC1所成的锐二面角.
考点:用空间向量求平面间的夹角,异面直线及其所成的角
专题:空间位置关系与距离,空间角
分析:(1)以D为原点,DA,DC,DD1分别为x轴,y轴,z轴,建立空间直角坐标系,利用向量法能求出异面直线AF和BE所成的角的余弦值.
(2)求出平面ACC1的一个法向量和平面BFC1的法向量利用向量法能求出平面ACC1与平面BFC1所成的锐二面角.
解答: 解:(1)以D为原点,DA,DC,DD1分别为x轴,y轴,z轴,
建立空间直角坐标系,
则A(1,0,0),E(
1
2
,0,1),B(1,1,0),F(1,
1
2
,1).
AE
=(0,
1
2
,1),
BE
=(-
1
2
,-1,1)

∴cos<
AF
BE
>=
1
2
5
4
9
4
=
2
5
15

∴异面直线AF和BE所成的角的余弦值为
2
5
15

(2)∵ABCD是正方形,∴AC⊥DB,
∵正方体AC1中,CC1⊥底面ABCD,∴BD⊥CC1
∴BD⊥平面ACC1,∴平面平面ACC1的一个法向量为
DB
=(1,1,0)

设平面BFC1的法向量为
n
=(x,y,z)
BC1
=(-1,0,1),
n
BF
=-
1
2
y+z=0
n
BC1
=-x+z=0
,∴取z=1,得
n
=(1,2,1)

cos<
DB
n
>=
1+2
2
6
=
3
2
,∵<
DB
n
>为锐角,
∴所求的锐二面角为
π
6
点评:本题考查异面直线所成的角的余弦值的求法,考查二面角的求法,解题时要认真审题,注意向量法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,直三棱柱ABC-A1B1C1,底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分别是A1B1,A1A的中点;
(1)求
BN
的长;
(2)求cos<
BA1
CB1
>的值;
(3)求证:A1B⊥C1M.
(4)求CB1与平面A1ABB1所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知定点A(-1,1).动点P到点(0,
1
4
)的距离比P到y=-1的距离小
3
4

(1)求点P的轨迹C的方程;
(2)若Q是轨迹C上异于点P的一个点,且
PQ
OA
(λ>0).直线OP与QA交于点M.问:是否存在点P,使得△PQA和△PAM的面积满足S△PQA=4S△PAM?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1、F2分别是椭圆D:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点,过F2作倾斜角为
π
3
的直线交椭圆D于A、B两点,F1到直线AB的距离为3,△ABF1的周长为8.
(1)求椭圆D的方程;
(2)已知点M(-1,0),设E是椭圆D上的一点,过E、M两点的直线l交y轴于点C,若
CE
=2
EM
,求点C的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C1:x2=2py(p>0)与椭圆C2
x2
a2
+
y2
b2
=1(a>b>0)在第一象限的公共点为A(2
2
,1),设抛物线C1的焦点为F,椭圆C2的左、右焦点分别为F1(-c,0),F2(c,0),△F1F2F的面积为6.
(Ⅰ)求抛物线C1和椭圆C2的方程;
(Ⅱ)设A1,A2为椭圆C2的左、右顶点,P为椭圆C2上异于A1,A2的任意一点,直线l:x=
a2
c
,l与直线A1P,A2P分别交于点M,N,试探究:在x轴上是否存在定点D,使得以线段MN为直径的圆恒过点D,若存在,请求出点D的坐标,若不存在,请说明理由;
(Ⅲ)推广(Ⅱ),得椭圆的一般性的正确命题,据此类比,得到双曲线的一般性正确命题,请直接写出这个双曲线的正确命题(不必证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin2x+2sinxcosx-cos2x
(1)求函数f(x)的最小正周期;    
(2)求函数f(x)在[0,
π
2
]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,线段AB的两个端点A、B分别在x轴、y轴上滑动,|AB|=5,点M是线段AB上一点,且
AM
MB
(λ>0).
(1)求点M的轨迹E的方程,并指明轨迹E是何种曲线;
(2)当λ=
2
3
时,过点P(1,1)的直线与轨迹E交于C、D两点,且P为弦CD的中点,求直线CD的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线y=
3
3
x与圆心在x轴正半轴、半径为2的圆C交于两点A、B,且弦AB的长为2
3

(Ⅰ)求圆C的方程;
(Ⅱ)若点P(m,n)在圆C上,求
3
m+n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=1,an+1=an+
1
n(n+1)
(n∈N*),则an=
 

查看答案和解析>>

同步练习册答案