【题目】如图,在正方体中,点是底面的中心,是线段的上一点。
(1)若为的中点,求直线与平面所成角的正弦值;
(2)能否存在点使得平面平面,若能,请指出点的位置关系,并加以证明;若不能,请说明理由。
【答案】(1) (2)见证明
【解析】
(1)建立空间坐标系得到直线的方向向量和面的法向量,再由向量的夹角公式得到结果;(2)建立坐标系得到两个面的法向量,再由法向量互相垂直得到结果.
不妨设正方体的棱长为2,以,,分别为,,轴建立如图所示的空间直角坐标系,则,,,.
(1)因为点是的中点,
所以点的坐标为.
所以,,.
设是平面的法向量,则,
即.
取,则,所以平面的一个法向量为.
所以 .
所以直线与平面所成角的正弦值为.
(2)假设存在点使得平面平面,设.
显然,.
设是平面的法向量,则,即,
取,则,,所以平面的一个法向量为.
因为,所以点的坐标为.
所以,.
设是平面的法向量,则,即.
取,则,所以平面的一个法向量为.
因为平面平面,所以,即,,解得.
所以的值为2.即当时,平面平面.
科目:高中数学 来源: 题型:
【题目】已知的两个顶点为,,平面内P,Q同时满足;;.
求顶点A的轨迹E的方程;
过点作两条互相垂直的直线,,直线,被点A的轨迹E截得的弦分别为,,设弦,的中点分别为M,试问:直线MN是否恒过一个顶点?若过定点,请求出该顶点,若不过定点,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】顺次连接椭圆的四个顶点恰好构成了一个边长为且面积为的菱形。
(1)求椭圆的方程;
(2),是椭圆上的两个不同点,若直线,的斜率之积为(以为坐标原点),线段上有一点满足,连接并延长交椭圆于点,求椭圆的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现拟建一个粮仓,如图1所示,粮仓的轴截而如图2所示,ED=EC,ADBC,BC⊥AB,EF⊥AB,CD交EF于点G,EF=FC=10m.
(1)设∠CFB=θ,求粮仓的体积关于θ的函数关系式;
(2)当sinθ为何值时,粮仓的体积最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,O坐标原点,从直线yx+1上的一点作x轴的垂线,垂足记为Q1,过Q1作OP1的平行线,交直线yx+1于点,再从P2作x轴的垂线,垂足记为Q2,依次重复上述过程得到一系列点:P1,Q1,P2,Q2,…,Pn,Qn,记Pk点的坐标为,k=1,2,3,…,n,现已知x1=2.
(1)求Q2、Q3的坐标;
(2)试求xk(1≤k≤n)的通项公式;
(3)点Pn、Pn+1之间的距离记为|PnPn+1|(n∈N*),是否存在最小的正实数t,使得t对一切的自然数n恒成立?若存在,求t的值,若不存在,请说明理由
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com