精英家教网 > 高中数学 > 题目详情
9.已知曲线y1=2-$\frac{1}{x}$与y2=x3-x2+x在x=x0处的切线的斜率的乘积为3,则x0=(  )
A.-2B.2C.$\frac{1}{2}$D.1

分析 分别求出两个函数的导函数,得到在x=x0处的导数值,利用在x=x0处的切线的斜率的乘积为3列式求得x0的值.

解答 解:由y1=2-$\frac{1}{x}$,得y1′=$\frac{1}{{x}^{2}}$,
由y2=x3-x2+x,得${y}_{2}′=3{x}^{2}-2x+1$,
则${y}_{1}′{|}_{x={x}_{0}}=\frac{1}{{{x}_{0}}^{2}}$,${y}_{2}′{|}_{x={x}_{0}}=3{{x}_{0}}^{2}-2{x}_{0}+1$,
由$\frac{1}{{{x}_{0}}^{2}}•(3{{x}_{0}}^{2}-2{x}_{0}+1)=3$,得${x}_{0}=\frac{1}{2}$.
故选:C.

点评 本题考查利用导数研究过曲线上某点处的切线方程,过曲线上某点处的切线的斜率,就是函数在该点处的导数值,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知虚数z=(x-2)+yi(x,y∈R),若|z|=1,则$\frac{y}{x}$的取值范围是[-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列各角中与$\frac{2π}{3}$终边相同的一个是(  )
A.$\frac{π}{3}$B.-$\frac{2π}{3}$C.-$\frac{4π}{3}$D.$\frac{5π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设$\overrightarrow{a}$=(3,-2,-1)是直线l的方向向量,$\overrightarrow{n}$=(-1,-2,1)是平面α的法向量,则直线l与平面α(  )
A.垂直B.平行或在平面α内C.平行D.在平面α内

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.用长4厘米,宽2厘米,高1厘米的长方体拼成一个正方体,至少要用(  )
A.2个B.4个C.8个D.16个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.给出下列结论:
?①命题“若¬p则q”的逆否命题是“若p则¬q”;
?②命题“?n∈N+,n2+3n能被10整除”的否定是“?n∈N+,n2+3n”不能被10整除;
?③命题“?x∈R,x2+2x+3>0”的否定是“?x∈R,x2+2x+3<0”;
其中正确命题的序号是②.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在用反证法证明命题“已知:x∈R,a=x2+$\frac{1}{2}$,b=2-x,c=x2-x+1,求证:a,b,c至少有一个不小于1”时,假设正确的是(  )
A.假设a,b,c都不小于1B.假设a,b,c都小于1
C.假设a,b,c不都大于等于1D.假设a,b,c不都小于1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,角A,B,C所对边长分别为a,b,c,若b2+c2=2a2,则cosA的最小值为(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.学校游园活动有这样一个游戏:甲箱子里装有3个白球,2个黑球,乙箱子里装有1个白球,2个黑球,这些球除了颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖(每次游戏结束后将球放回原箱).
(1)求在1次游戏中:
①摸出3个白球的概率.
②获奖的概率.
(2)求在3次游戏中获奖次数X的分布列.(用数字作答)

查看答案和解析>>

同步练习册答案