精英家教网 > 高中数学 > 题目详情
4.用长4厘米,宽2厘米,高1厘米的长方体拼成一个正方体,至少要用(  )
A.2个B.4个C.8个D.16个

分析 判断组成的正方体的棱长最小是4厘米,然后求解长方体的个数.

解答 解:用长4厘米,宽2厘米,高1厘米的长方体拼成一个正方体,正方体的最小棱长为4,
可得如图放法,
共8个;
答:至少要8个这样的长方体木块.
故选:C.

点评 抓住正方体的棱长相等的特点,得出每条棱长上需要的长方体的个数是解决此类问题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=ax-$\frac{1}{x}$-(a+1)lnx,a∈R.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)当a≥1时,若f(x)>1在区间[$\frac{1}{e}$,e]上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知对满足x+y+4=2xy的任意正实数x,y,都有x2+2xy+y2-ax-ay+1≥0,则实数a的取值范围为(-∞,$\frac{17}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.平面直角坐标系中有A(0,1),B(2,1),C(3,4),D(-1,2)四点,求过A,B,C三点的圆的方程,并判断点D与圆的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,抛物线C1:y2=2px与椭圆C2:$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1在第一象限的交点为B,O为坐标原点,A为椭圆的右顶点,△OAB的面积为$\frac{8\sqrt{6}}{3}$.
(1)求抛物线C1的方程;
(2)过A点作直线L交C1于C、D两点,求线段CD长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知曲线y1=2-$\frac{1}{x}$与y2=x3-x2+x在x=x0处的切线的斜率的乘积为3,则x0=(  )
A.-2B.2C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知抛物线C:x2=2py(p>0)的焦点为F,直线x=4与x轴的交点为M,与C的交点为N,且|NF|=$\frac{5}{4}$|MN|.
(1)求C的方程;
(2)设A(-2,1),B(2,1),动点Q(m,n)(-2<m<2)在曲线C上,曲线C在点Q处的切线为l.问:是否存在定点P(0,t)(t<0),使得l与PA,PB都相交,交点分别为D,E,且△QAB与△PDE的面积之比是常数?若存在,求t的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某班有男同学200人,女同学300人,用分层抽样的方法抽取一个容量为50的样本,则应分别抽取(  )
A.男同学20人,女同学30人B.男同学10人,女同学40人
C.男同学30人,女同学20人D.男同学25人,女同学25人

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)对任意实数x,y恒有f(x)=f(y)+f(x-y),当x>0时,f(x)<0,且f(2)=-3.
(Ⅰ)求f(0),并判断函数f(x)的奇偶性;
(Ⅱ)证明:函数f(x)在R上的单调递减;
(Ⅲ)若不等式f(2x-3)-f(-22x)<f(k•2x)+6在区间(-2,2)内恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案