分析 (1)把x=4代入抛物线方程计算N点坐标,得出|MN|,根据抛物线的定义列方程解出p;
(2)假设存在点P满足条件,求出直线PA,PB及切线方程,联立方程组求出D,E坐标,计算△QAB与△PDE的面积,令其比值为常数,得出方程组解出t.
解答 解:(1)设N(4,y1),代入x2=2py,得${y_1}=\frac{8}{p}$,∴$|MN|=\frac{8}{p}$,$|NF|=\frac{p}{2}+{y_1}=\frac{p}{2}+\frac{8}{p}$.
∴$\frac{p}{2}+\frac{8}{p}=\frac{5}{4}×\frac{8}{p}$,解得p=2,
∴C的方程为x2=4y;
(2)点A、B均在抛物线x2=4y上,
假设存在点P(0,t)(t<0)满足条件,
则直线PA的方程是y=$\frac{t-1}{2}$x+t,直线PB的方程是y=$\frac{1-t}{2}$x+t.
曲线C在Q处的切线l的方程是$y=\frac{m}{2}x-\frac{m^2}{4}$,它与y轴的交点为F(0,$-\frac{m^2}{4}$).
由于-2<m<2,因此$-1<\frac{m}{2}<1$.
①当-1<t<0时,$-1<\frac{t-1}{2}<-\frac{1}{2}$,存在m∈(-2,2),使得$\frac{m}{2}=\frac{t-1}{2}$,
即l与直线PA平行,故当-1<t<0时不符合题意.
②当t≤-1时,$\frac{t-1}{2}$≤-1<$\frac{m}{2}$,$\frac{1-t}{2}$≥1>$\frac{m}{2}$,所以l与直线PA,PB一定相交.
分别联立方程组 $\left\{\begin{array}{l}y=\frac{t-1}{2}x+t\\ y=\frac{m}{2}x-\frac{m^2}{4}\end{array}\right.$,$\left\{\begin{array}{l}y=\frac{1-t}{2}x+t\\ y=\frac{m}{2}x-\frac{m^2}{4}\end{array}\right.$
解得D,E的横坐标分别是${x_D}=\frac{{{m^2}+4t}}{2(m+1-t)}$,${x_E}=\frac{{{m^2}+4t}}{2(m+t-1)}$,
则${x_D}-{x_E}=(1-t)\frac{{{m^2}+4t}}{{{m^2}-{{(t-1)}^2}}}$.
又|FP|=$-\frac{m^2}{4}-t$,有S△PDE=$\frac{1}{2}$•|FP|•|xE-xD|=$\frac{1-t}{8}•\frac{{{{({m^2}+4t)}^2}}}{{{{(t-1)}^2}-{m^2}}}$,
又S△QAB=$\frac{1}{2}$•4•(1-$\frac{m}{4}$)=$\frac{{4-{m^2}}}{2}$,
于是$\frac{{{S_{△QAB}}}}{{{S_{△PDE}}}}$=$\frac{4}{1-t}•\frac{{({m^2}-4)[{m^2}-{{(t-1)}^2}]}}{{{{({m^2}+4t)}^2}}}$=$\frac{4}{1-t}•\frac{{{m^4}-[4+{{(t-1)}^2}]{m^2}+4{{(t-1)}^2}}}{{{m^4}+8t{m^2}+16{t^2}}}$.
对任意m(-2,2),要使$\frac{{{S_{△QAB}}}}{{{S_{△PDE}}}}$为常数,即只需t满足$\left\{\begin{array}{l}-4-{(t-1)^2}=8t\\ 4{(t-1)^2}=16{t^2}\end{array}\right.$
解得t=-1.此时$\frac{{{S_{△QAB}}}}{{{S_{△PDE}}}}$=2,故存在t=-1,使得△QAB与△PDE的面积之比是常数2.
点评 本题考查了抛物线的性质,直线与抛物线的位置关系,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 假设a,b,c都不小于1 | B. | 假设a,b,c都小于1 | ||
| C. | 假设a,b,c不都大于等于1 | D. | 假设a,b,c不都小于1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$$\overrightarrow a$+$\frac{2}{3}$$\overrightarrow b$ | B. | $\frac{2}{3}$$\overrightarrow a$+$\frac{1}{3}$$\overrightarrow b$ | C. | $\frac{3}{5}$$\overrightarrow a$+$\frac{2}{5}$$\overrightarrow b$ | D. | $\frac{2}{5}$$\overrightarrow a$+$\frac{3}{5}$$\overrightarrow b$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com