·ÖÎö £¨¢ñ£©ÓÉÊýÁ¿»ýµÄ×ø±ê±íʾµÃµ½f£¨x£©£¬½µÃݺóÀûÓø¨Öú½Ç¹«Ê½»¯»ý£¬´úÈëÖÜÆÚ¹«Ê½Ç󦨵ÄÖµ£»
£¨¢ò£©ÓÉf£¨C£©=1ÇóµÃC£¬ÓÉÒÑÖªµÃµ½sinBcosA=3sinAcosA£®È»ºó·ÖcosA=0ºÍcosA¡Ù0·ÖÀàÇó½âÇóµÃ¡÷ABCµÄÃæ»ý£®
½â´ð ½â£º£¨¢ñ£©¡ß$\overrightarrow{a}$=£¨sin¦Øx+cos¦Øx£¬$\sqrt{3}$cos¦Øx£©£¬$\overrightarrow{b}$=£¨cos¦Øx-sin¦Øx£¬2sin¦Øx£©£¬
¡àf£¨x£©=$\overrightarrow{a}$•$\overrightarrow{b}$=${cos^2}¦Øx-{sin^2}¦Øx+2\sqrt{3}cos¦Øx•sin¦Øx$=$cos2¦Øx+\sqrt{3}sin2¦Øx$=$2sin£¨2¦Øx+\frac{¦Ð}{6}£©$£¬
¡ß¦Ø£¾0£¬¡àº¯Êýf£¨x£©µÄÖÜÆÚT=$\frac{2¦Ð}{2¦Ø}=¦Ð$£¬Ôò¦Ø=1£»
£¨¢ò£©ÓÉ£¨¢ñ£©µÃ£¬$f£¨x£©=2sin£¨2x+\frac{¦Ð}{6}£©$£¬
¡ßf£¨C£©=1£¬¡à$sin£¨2C+\frac{¦Ð}{6}£©=\frac{1}{2}$£¬¶ø$\frac{¦Ð}{6}£¼2C+\frac{¦Ð}{6}£¼\frac{13}{6}¦Ð$£¬
¡à$2C+\frac{¦Ð}{6}=\frac{5}{6}¦Ð$£¬µÃ$C=\frac{¦Ð}{3}$£®
ÓÉ C=¦Ð-£¨A+B£©£¬µÃsinC=sin£¨B+A£©=sinBcosA+cosBsinA£¬
¡ßsinC+sin£¨B-A£©=3sin2A£¬
¡àsinBcosA+cosBsinA+sinBcosA-cosBsinA=6sinAcosA£¬
ÕûÀíµÃsinBcosA=3sinAcosA£®
ÈôcosA=0£¬¼´A=$\frac{¦Ð}{2}$ʱ£¬¡÷ABCÊÇÖ±½ÇÈý½ÇÐΣ¬ÇÒB=$\frac{¦Ð}{6}$£¬
ÓÚÊÇb=ctanB=2tan$\frac{¦Ð}{6}$=$\frac{2\sqrt{3}}{3}$£¬¡àS¡÷ABC=$\frac{1}{2}$bc=$\frac{2\sqrt{3}}{3}$£®
ÈôcosA¡Ù0£¬ÔòsinB=3sinA£¬ÓÉÕýÏÒ¶¨ÀíµÃb=3a£®¢Ù
ÓÉÓàÏÒ¶¨ÀíµÃ£ºc2=a2+b2-2abcos60¡ã¢Ú
ÁªÁ¢¢Ù¢Ú£¬½áºÏc=2£¬½âµÃa=$\frac{2\sqrt{7}}{7}$£¬b=$\frac{6\sqrt{7}}{7}$£¬
¡àS¡÷ABC=$\frac{1}{2}$absinC=$\frac{1}{2}$¡Á$\frac{2\sqrt{7}}{7}$¡Á$\frac{6\sqrt{7}}{7}$¡Á$\frac{\sqrt{3}}{2}$=$\frac{3\sqrt{3}}{7}$£®
×ÛÉÏ£¬¡÷ABCµÄÃæ»ýΪ$\frac{2\sqrt{3}}{3}$»ò$\frac{3\sqrt{3}}{7}$£®
µãÆÀ ±¾Ì⿼²éÈý½Çº¯ÊýÖеĺãµÈ±ä»»Ó¦Ó㬿¼²éÁËÆ½ÃæÏòÁ¿µÄÊýÁ¿»ýÔËË㣬ѵÁ·ÁËÀûÓÃÕýÏÒ¶¨ÀíºÍÓàÏÒ¶¨ÀíÇó½âÈý½ÇÐΣ¬ÊÇÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $2\sqrt{2}$ | B£® | 2 | C£® | 4 | D£® | $3\sqrt{2}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 0 | B£® | 1 | C£® | 2 | D£® | 3 |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com