精英家教网 > 高中数学 > 题目详情
1.已知平面α∥平面β,直线m?α,n?β,点A∈m,点B∈n,记点A,B之间的距离为a,点A到直线n的距离为b,直线m和n的距离c,则a,b,c的大小关系是c≤b≤a.

分析 此题根据平面与平面平行的判断性质,判断c最小,再根据点到直线距离和点到直线上任意点距离判断a最大.

解答 解:由于平面α∥平面β,直线m和n又分别是两平面的直线,则c即是平面之间的距离,即两个平面内直线的最短距离.
而由于两直线不一定在同一平面内,则b一定大于c,判断a和b时,
因为B是n上任意一点,则a大于b.
故答案为:c≤b≤a.

点评 此题主要考查平面间与平面平行的性质.考查点到直线距离.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知点A(0,2),抛物线${C_1}:{y^2}=ax\;(a>0)$的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,若|FM|:|MN|=1:5,则a的值等于$\frac{{2\sqrt{6}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.记数列{an}的前n项和Sn=2n+λ.
(1)若λ=3时,求{an}的通项公式;
(2)是否存在常数λ,使得{an}为等比数列?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数y=sinx•cosx的导函数为cos2x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.过抛物线C:y2=4x的焦点F的直线l交C于A,B两点,点M(-1,2),若$\overrightarrow{MA}$•$\overrightarrow{MB}$=0,则直线l的斜率k=(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若0<θ<$\frac{π}{2}$,则cosθ,cos(sinθ),sin(cosθ)的大小顺序为cos(sinθ)>cosθ>sin(cosθ);.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知点F1是抛物线C:x2=4y的焦点,点F2为抛物线C的对称轴与其准线的交点,过F2作抛物线C的切线,切点为A,若点A恰好在以F1,F2为焦点的双曲线上,则双曲线的离心率为$\sqrt{2}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知有穷数列{an}各项均不相等,将{an}的项从大到小重新排序后相应的项数构成新数列{Pn},称{Pn}为{an}的“序数列”,例如数列:a1,a2,a3满足a1>a3>a2,则其序数列{Pn}为1,3,2.
(1)求证:有穷数列{an}的序数列{Pn}为等差数列的充要条件是有穷数列{an}为单调数列;
(2)若项数不少于5项的有穷数列{bn},{cn}的通项公式分别是bn=n•($\frac{3}{5}$)n(n∈N*),cn=-n2+tn(n∈N*),且{bn}的序数列与{cn}的序数列相同,求实数t的取值范围;
(3)若有穷数列{dn}满足d1=1,|dn+1-dn|=($\frac{1}{2}$)n(n∈N*),且{d2n-1}的序数列单调减,{d2n}的序数列单调递增,求数列{dn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知向量$\overrightarrow{a}$=(sinωx+cosωx,$\sqrt{3}$cosωx),$\overrightarrow{b}$=(cosωx-sinωx,2sinωx)(ω>0),若函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$的相邻两对称轴间的距离等于$\frac{π}{2}$.
(Ⅰ)求ω的值;
(Ⅱ)在△ABC中,a、b、c分别是角A、B、C所对的边,且f(C)=1,c=2,且sinC+sin(B-A)=3sin2A,求△ABC的面积.

查看答案和解析>>

同步练习册答案