分析 (1)把λ=3代入数列的前n项和,求出首项,再由an=Sn-Sn-1求出n≥2时的通项公式,验证后得答案;
(2)由数列的前n项和求得首项,再由an=Sn-Sn-1求出n≥2时的通项公式,由首项适合该通项公式即可求得λ的值.
解答 解:(1)当λ=3时,Sn=2n+3,
∴a1=S1=5;当n≥2时,${a}_{n}={S}_{n}-{S}_{n-1}={2}^{n}+3-{2}^{n-1}-3={2}^{n-1}$.
a1=5对上式不成立,
∴${a}_{n}=\left\{\begin{array}{l}{5,n=1}\\{{2}^{n-1},n≥2}\end{array}\right.$;
(2)由Sn=2n+λ,得a1=S1=2+λ;
当n≥2时,${a}_{n}={S}_{n}-{S}_{n-1}={2}^{n}+λ-{2}^{n-1}-λ={2}^{n-1}$.
若存在常数λ,使得{an}为等比数列,则2+λ=20=1,得λ=-1.
故存在实数λ=-1,使得{an}为等比数列.
点评 本题考查等比数列的通项公式,考查了等比数列的前n项和,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{8}{25}$ | B. | $\frac{8}{5}$ | C. | $\frac{8}{25}$ | D. | $\frac{{1-2\sqrt{6}}}{25}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y2=2x | B. | y2=3x | C. | y2=4x | D. | y2=x |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | sinθ≥0或cosθ≥0 | B. | sinθ<0或cosθ<0 | C. | sinθ<0且cosθ<0 | D. | sinθ>0且cosθ>0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com