10£®ÒÑÖªÓÐÇîÊýÁÐ{an}¸÷Ïî¾ù²»ÏàµÈ£¬½«{an}µÄÏî´Ó´óµ½Ð¡ÖØÐÂÅÅÐòºóÏàÓ¦µÄÏîÊý¹¹³ÉÐÂÊýÁÐ{Pn}£¬³Æ{Pn}Ϊ{an}µÄ¡°ÐòÊýÁС±£¬ÀýÈçÊýÁУºa1£¬a2£¬a3Âú×ãa1£¾a3£¾a2£¬ÔòÆäÐòÊýÁÐ{Pn}Ϊ1£¬3£¬2£®
£¨1£©ÇóÖ¤£ºÓÐÇîÊýÁÐ{an}µÄÐòÊýÁÐ{Pn}ΪµÈ²îÊýÁеijäÒªÌõ¼þÊÇÓÐÇîÊýÁÐ{an}Ϊµ¥µ÷ÊýÁУ»
£¨2£©ÈôÏîÊý²»ÉÙÓÚ5ÏîµÄÓÐÇîÊýÁÐ{bn}£¬{cn}µÄͨÏʽ·Ö±ðÊÇbn=n•£¨$\frac{3}{5}$£©n£¨n¡ÊN*£©£¬cn=-n2+tn£¨n¡ÊN*£©£¬ÇÒ{bn}µÄÐòÊýÁÐÓë{cn}µÄÐòÊýÁÐÏàͬ£¬ÇóʵÊýtµÄȡֵ·¶Î§£»
£¨3£©ÈôÓÐÇîÊýÁÐ{dn}Âú×ãd1=1£¬|dn+1-dn|=£¨$\frac{1}{2}$£©n£¨n¡ÊN*£©£¬ÇÒ{d2n-1}µÄÐòÊýÁе¥µ÷¼õ£¬{d2n}µÄÐòÊýÁе¥µ÷µÝÔö£¬ÇóÊýÁÐ{dn}µÄͨÏʽ£®

·ÖÎö £¨1£©ÓÉÌâÒ⣬·Ö±ðÖ¤Ã÷³ä·ÖÐԺͱØÒªÐÔ£®ÆäÖУ¬³ä·ÖÐÔÖ¤Ã÷¼´ÈôÓÐÇîÊýÁÐ{an}µÄÐòÊýÁÐ{Pn}ΪµÈ²îÊýÁУ¬ÔòÓÐÇîÊýÁÐ{an}Ϊµ¥µ÷ÊýÁУ¬·Ö±ðÌÖÂÛ{Pn}ΪµÝÔöÊýÁÐʱ£¬ÊýÁÐ{an}µÄÌØµãÊÇÏîÓÉ´óµ½Ð¡ÒÀ´ÎÅÅÁУ¬µÃµ½ÓÐÇîÊýÁÐ{an}Ϊµ¥µ÷µÝ¼õÊýÁУ»
ͬÀí{Pn}ΪµÝ¼õÊýÁУ¬ÓÐÇîÊýÁÐ{an}Ϊµ¥µ÷µÝÔöÊýÁУ®±ØÒªÐÔÖ¤Ã÷ͬÑùÐ轫ÓÐÇîÊýÁÐ{an}·ÖΪµÝÔöºÍµÝ¼õÀ´ÌÖÂÛ£¬×îºóµÃ³öÆäÐòÊýÁÐ{Pn}ΪµÈ²îÊýÁУ»
£¨2£©Í¨¹ý×÷²î·¨±È½ÏÏàÁÚÁ½ÏîµÄ´óС¹ØÏµ£¬¼´bn+1-bn=$\frac{3-2n}{5}$•£¨$\frac{3}{5}$£©n£¬µÃµ½µ±n¡Ý2ʱ£¬bn+1£¼bn£®ËùÒÔÐèÒª±È½ÏµÚÒ»ÏîµÄ´óСËùÔÚµÄλÖ㬼ÆËã¿ÉÒԵóöb2£¾b3£¾b1£¾b4µÄ´óС¹ØÏµ£®ÓÉÊýÁÐ{cn}´óС¹ØÏµÎªc2£¾c3£¾c1£¾c4£¾c5£¾¡­£¾cn-1£¾cn£®
·Ö±ðËã³öc1=t-1£¬c2=2t-4£¬c3=3t-9£®ÓÉÁÐc2£¾c3£¾c1Áв»µÈʽ²¢Çó½âµÃtµÄȡֵ·¶Î§£®
£¨3£©ÒòΪ{d2n-1}µÄÐòÊýÁе¥µ÷¼õ£¬¼´d2n+1-d2n-1£¾0£¬½«Æä±äÐοɵõ½d2n+1-d2n+d2n-d2n-1£¾0£®ÀûÓÃ|d2n+1-d2n|=$£¨\frac{1}{2}£©^{2n}$£¼|d2n-d2n-1|=$£¨\frac{1}{2}£©^{2n-1}$¿ÉµÃd2n-d2n-1£¾0£¬¼´d2n-d2n-1=$£¨\frac{1}{2}£©^{2n-1}$=$\frac{£¨-1£©^{2n}}{{2}^{2n-1}}$¢Ù£¬ÓÉd2n+1-d2n£¼0£¬d2n+1-d2n=$-£¨\frac{1}{2}£©^{2n}$=$\frac{£¨-1£©^{2n+1}}{{2}^{n}}$¢Ú
ÕûÀí¢Ù¢ÚµÃdn+1-dn=$\frac{£¨-1£©^{n+1}}{{2}^{n}}$£®ËùÒÔ¿ÉÖªÊýÁÐ{dn+1-dn}ÊǵȱÈÊýÁУ¬Ôò¿ÉÇóÆäǰnÏîºÍΪTn-1=£¨d2-d1£©+£¨d3-d2£©+¡­+£¨dn-dn-1£©=dn-d1£®¼´¿ÉÇó³öÊýÁÐ{dn}µÄͨÏʽ£®

½â´ð £¨1£©Ö¤Ã÷£ºÓÉÌâÒâµÃ£¬
³ä·ÖÌõ¼þ£º
ÒòΪÓÐÇîÊýÁÐ{an}µÄÐòÊýÁÐ{Pn}ΪµÈ²îÊýÁÐ
ËùÒÔ¢Ù{Pn}Ϊ1£¬2£¬3£¬¡­£¬n-2£¬n-1£¬n
ËùÒÔÓÐÇîÊýÁÐ{an}ΪµÝ¼õÊýÁУ¬
¢Ú{Pn}Ϊn£¬n-1£¬n-2£¬¡­£¬3£¬2£¬1
ËùÒÔÓÐÇîÊýÁÐ{an}ΪµÝÔöÊýÁУ¬
ËùÒÔÓÉ¢Ù¢Ú£¬ÓÐÇîÊýÁÐ{an}Ϊµ¥µ÷ÊýÁÐ
±ØÒªÌõ¼þ£º
ÒòΪÓÐÇîÊýÁÐ{an}Ϊµ¥µ÷ÊýÁÐ
ËùÒÔ¢ÙÓÐÇîÊýÁÐ{an}ΪµÝ¼õÊýÁÐ
Ôò{Pn}Ϊ1£¬2£¬3£¬¡­£¬n-2£¬n-1£¬nµÄµÈ²îÊýÁÐ
¢ÚÓÐÇîÊýÁÐ{an}ΪµÝÔöÊýÁÐ
Ôò{Pn}Ϊn£¬n-1£¬n-2£¬¡­£¬3£¬2£¬1µÄµÈ²îÊýÁÐ
ËùÒÔÓÉ¢Ù¢Ú£¬ÐòÊýÁÐ{Pn}ΪµÈ²îÊýÁÐ
×ÛÉÏ£¬ÓÐÇîÊýÁÐ{an}µÄÐòÊýÁÐ{Pn}ΪµÈ²îÊýÁеijäÒªÌõ¼þÊÇÓÐÇîÊýÁÐ{an}Ϊµ¥µ÷ÊýÁÐ
£¨2£©½â£ºÓÉÌâÒâµÃ£¬
ÒòΪbn=n•£¨$\frac{3}{5}$£©n£¨n¡ÊN*£©
ËùÒÔbn+1-bn=$\frac{3-2n}{5}$•£¨$\frac{3}{5}$£©n
µ±n¡Ý2ʱ£¬bn+1-bn£¼0¼´bn+1£¼bn
b1=$\frac{3}{5}$£¬b2=$\frac{18}{25}$£¬b3=$\frac{81}{125}$£¬b4=$\frac{324}{625}$
b2£¾b3£¾b1£¾b4£¾b5£¾¡­£¾bn-1£¾bn
ÓÖÒòΪcn=-n2+tn£¨n¡ÊN*£©£¬ÇÒ{bn}µÄÐòÊýÁÐÓë{cn}µÄÐòÊýÁÐÏàͬ
ËùÒÔc2£¾c3£¾c1£¾c4£¾c5£¾¡­£¾cn-1£¾cn
ÓÖÒòΪc1=t-1£¬c2=2t-4£¬c3=3t-9
ËùÒÔ2t-4£¾3t-9£¾t-1
ËùÒÔ4£¼t£¼5¼´t¡Ê£¨4£¬5£©
£¨3£©½â£ºÓÉÌâÒâµÃ£¬d2n+1-d2n-1£¾0
ËùÒÔd2n+1-d2n+d2n-d2n-1£¾0
ÓÖÒòΪ|d2n+1-d2n|=$£¨\frac{1}{2}£©^{2n}$£¼|d2n-d2n-1|=$£¨\frac{1}{2}£©^{2n-1}$
ËùÒÔd2n-d2n-1£¾0£¬¼´d2n-d2n-1=$£¨\frac{1}{2}£©^{2n-1}$=$\frac{£¨-1£©^{2n}}{{2}^{2n-1}}$¢Ù
d2n+1-d2n£¼0£¬d2n+1-d2n=$-£¨\frac{1}{2}£©^{2n}$=$\frac{£¨-1£©^{2n+1}}{{2}^{n}}$¢Ú
ÕûÀí¢Ù¢ÚµÃdn+1-dn=$\frac{£¨-1£©^{n+1}}{{2}^{n}}$
ÁîÊýÁÐBn=dn+1-dnÔòÊýÁÐ{Bn}ÊÇÒÔ$\frac{1}{2}$ΪÊ×Ï࣬$-\frac{1}{2}$Ϊ¹«±ÈµÄµÈ±ÈÊýÁУ¬ËùÒÔ{Bn}µÄǰn-1ÏîºÍΪTn-1=$\frac{\frac{1}{2}£¨1-£¨-\frac{1}{2}£©^{n-1}£©}{1-£¨-\frac{1}{2}£©}$=$\frac{1}{3}-\frac{1}{3}£¨-\frac{1}{2}£©^{n-1}$
ËùÒÔdn=d1+Tn-1=$\frac{4}{3}+\frac{1}{3}\frac{£¨-1£©^{n}}{{2}^{n-1}}$

µãÆÀ ±¾Ì⣨1£©ÊÇÒÔÊýÁÐΪ¿ò¼Ü¶Ô³äÒªÌõ¼þ½øÐп¼²ì£¬ÒªÇóѧÉúÒªÓÐÑϽ÷µÄÂß¼­Ë¼Î¬£»£¨2£©ÀûÓú¯Êý˼Ï뿼²ìÁËÊýÁеĵ¥µ÷ÐÔ£¬ÒªÇóѧÉú×¢Òâϸ½Ú£»£¨3£©ÄѶȽϴó£¬ÀûÓÃת»¯Ó뻯¹é˼Ï룬µÃµ½ÊýÁÐ{dn+1-dn}ΪµÈ±ÈÊýÁУ¬ÀûÓõþ¼ÓÇóºÍ·½·¨¼ä½ÓÇóµÃÊýÁÐ{dn}µÄͨÏʽ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Èçͼ£¬Õý·½ÌåABCD-A1B1C1D1ÖУ¬µãM£¬N·Ö±ðÊÇCD¡¢DD1µÄÖе㣮
£¨1£©ÇóÖ¤£ºBN¡ÍA1C1£»
£¨2£©ÇóBB1ºÍÆ½ÃæA1C1MËù³É½ÇµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÒÑÖªÆ½Ãæ¦Á¡ÎÆ½Ãæ¦Â£¬Ö±Ïßm?¦Á£¬n?¦Â£¬µãA¡Êm£¬µãB¡Ên£¬¼ÇµãA£¬BÖ®¼äµÄ¾àÀëΪa£¬µãAµ½Ö±ÏßnµÄ¾àÀëΪb£¬Ö±ÏßmºÍnµÄ¾àÀëc£¬Ôòa£¬b£¬cµÄ´óС¹ØÏµÊÇc¡Üb¡Üa£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Èçͼ£¬ÒÑÖªµãA£¨-1£¬0£©£¬F£¨1£¬0£©ºÍÅ×ÎïÏßC£ºy2=4x£¬OÎª×ø±êÔ­µã£¬¹ýµãAµÄ¶¯Ö±Ïßl½»Å×ÎïÏßCÓÚM£¬PÁ½µã£¬Ö±ÏßMF½»Å×ÎïÏßCÓÚÁíÒ»µãQ£®
£¨1£©Èô¡÷POMµÄÃæ»ýΪ$\frac{5}{2}$£¬ÇóÏòÁ¿$\overrightarrow{OM}$Óë$\overrightarrow{OP}$µÄ¼Ð½Ç£»
£¨2£©ÅжÏÖ±ÏßPQÓëyÖáµÄλÖùØÏµ£¬²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÒÑÖªº¯Êýf£¨x£©=[x3+£¨a-1£©x2-ax+a]ex£¬Èôx=0ÊÇf£¨x£©µÄÒ»¸ö¼«´óÖµµã£¬ÔòʵÊýaµÄȡֵ·¶Î§Îª£¨2£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÒÑÖª¶ÔÂú×ãx+y+4=2xyµÄÈÎÒâÕýʵÊýx£¬y£¬¶¼ÓÐx2+2xy+y2-ax-ay+1¡Ý0£¬ÔòʵÊýaµÄȡֵ·¶Î§Îª£¨-¡Þ£¬$\frac{17}{4}$]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£¬Èôa=2£¬c=3£¬B=120¡ã£¬Ôòb=$\sqrt{19}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Èçͼ£¬Å×ÎïÏßC1£ºy2=2pxÓëÍÖÔ²C2£º$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1ÔÚµÚÒ»ÏóÏ޵Ľ»µãΪB£¬OÎª×ø±êÔ­µã£¬AΪÍÖÔ²µÄÓÒ¶¥µã£¬¡÷OABµÄÃæ»ýΪ$\frac{8\sqrt{6}}{3}$£®
£¨1£©ÇóÅ×ÎïÏßC1µÄ·½³Ì£»
£¨2£©¹ýAµã×÷Ö±ÏßL½»C1ÓÚC¡¢DÁ½µã£¬ÇóÏß¶ÎCD³¤¶ÈµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªº¯Êýf£¨x£©=sin2x+asinxcosx-cos2x£¬ÇÒf£¨$\frac{¦Ð}{4}$£©=1£®
£¨1£©Çó³£ÊýaµÄÖµ£»
£¨2£©Çóf£¨x£©µÄ×îСÕýÖÜÆÚ¡¢×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸