·ÖÎö £¨1£©ÓÉÌâÒ⣬·Ö±ðÖ¤Ã÷³ä·ÖÐԺͱØÒªÐÔ£®ÆäÖУ¬³ä·ÖÐÔÖ¤Ã÷¼´ÈôÓÐÇîÊýÁÐ{an}µÄÐòÊýÁÐ{Pn}ΪµÈ²îÊýÁУ¬ÔòÓÐÇîÊýÁÐ{an}Ϊµ¥µ÷ÊýÁУ¬·Ö±ðÌÖÂÛ{Pn}ΪµÝÔöÊýÁÐʱ£¬ÊýÁÐ{an}µÄÌØµãÊÇÏîÓÉ´óµ½Ð¡ÒÀ´ÎÅÅÁУ¬µÃµ½ÓÐÇîÊýÁÐ{an}Ϊµ¥µ÷µÝ¼õÊýÁУ»
ͬÀí{Pn}ΪµÝ¼õÊýÁУ¬ÓÐÇîÊýÁÐ{an}Ϊµ¥µ÷µÝÔöÊýÁУ®±ØÒªÐÔÖ¤Ã÷ͬÑùÐ轫ÓÐÇîÊýÁÐ{an}·ÖΪµÝÔöºÍµÝ¼õÀ´ÌÖÂÛ£¬×îºóµÃ³öÆäÐòÊýÁÐ{Pn}ΪµÈ²îÊýÁУ»
£¨2£©Í¨¹ý×÷²î·¨±È½ÏÏàÁÚÁ½ÏîµÄ´óС¹ØÏµ£¬¼´bn+1-bn=$\frac{3-2n}{5}$•£¨$\frac{3}{5}$£©n£¬µÃµ½µ±n¡Ý2ʱ£¬bn+1£¼bn£®ËùÒÔÐèÒª±È½ÏµÚÒ»ÏîµÄ´óСËùÔÚµÄλÖ㬼ÆËã¿ÉÒԵóöb2£¾b3£¾b1£¾b4µÄ´óС¹ØÏµ£®ÓÉÊýÁÐ{cn}´óС¹ØÏµÎªc2£¾c3£¾c1£¾c4£¾c5£¾¡£¾cn-1£¾cn£®
·Ö±ðËã³öc1=t-1£¬c2=2t-4£¬c3=3t-9£®ÓÉÁÐc2£¾c3£¾c1Áв»µÈʽ²¢Çó½âµÃtµÄȡֵ·¶Î§£®
£¨3£©ÒòΪ{d2n-1}µÄÐòÊýÁе¥µ÷¼õ£¬¼´d2n+1-d2n-1£¾0£¬½«Æä±äÐοɵõ½d2n+1-d2n+d2n-d2n-1£¾0£®ÀûÓÃ|d2n+1-d2n|=$£¨\frac{1}{2}£©^{2n}$£¼|d2n-d2n-1|=$£¨\frac{1}{2}£©^{2n-1}$¿ÉµÃd2n-d2n-1£¾0£¬¼´d2n-d2n-1=$£¨\frac{1}{2}£©^{2n-1}$=$\frac{£¨-1£©^{2n}}{{2}^{2n-1}}$¢Ù£¬ÓÉd2n+1-d2n£¼0£¬d2n+1-d2n=$-£¨\frac{1}{2}£©^{2n}$=$\frac{£¨-1£©^{2n+1}}{{2}^{n}}$¢Ú
ÕûÀí¢Ù¢ÚµÃdn+1-dn=$\frac{£¨-1£©^{n+1}}{{2}^{n}}$£®ËùÒÔ¿ÉÖªÊýÁÐ{dn+1-dn}ÊǵȱÈÊýÁУ¬Ôò¿ÉÇóÆäǰnÏîºÍΪTn-1=£¨d2-d1£©+£¨d3-d2£©+¡+£¨dn-dn-1£©=dn-d1£®¼´¿ÉÇó³öÊýÁÐ{dn}µÄͨÏʽ£®
½â´ð £¨1£©Ö¤Ã÷£ºÓÉÌâÒâµÃ£¬
³ä·ÖÌõ¼þ£º
ÒòΪÓÐÇîÊýÁÐ{an}µÄÐòÊýÁÐ{Pn}ΪµÈ²îÊýÁÐ
ËùÒÔ¢Ù{Pn}Ϊ1£¬2£¬3£¬¡£¬n-2£¬n-1£¬n
ËùÒÔÓÐÇîÊýÁÐ{an}ΪµÝ¼õÊýÁУ¬
¢Ú{Pn}Ϊn£¬n-1£¬n-2£¬¡£¬3£¬2£¬1
ËùÒÔÓÐÇîÊýÁÐ{an}ΪµÝÔöÊýÁУ¬
ËùÒÔÓÉ¢Ù¢Ú£¬ÓÐÇîÊýÁÐ{an}Ϊµ¥µ÷ÊýÁÐ
±ØÒªÌõ¼þ£º
ÒòΪÓÐÇîÊýÁÐ{an}Ϊµ¥µ÷ÊýÁÐ
ËùÒÔ¢ÙÓÐÇîÊýÁÐ{an}ΪµÝ¼õÊýÁÐ
Ôò{Pn}Ϊ1£¬2£¬3£¬¡£¬n-2£¬n-1£¬nµÄµÈ²îÊýÁÐ
¢ÚÓÐÇîÊýÁÐ{an}ΪµÝÔöÊýÁÐ
Ôò{Pn}Ϊn£¬n-1£¬n-2£¬¡£¬3£¬2£¬1µÄµÈ²îÊýÁÐ
ËùÒÔÓÉ¢Ù¢Ú£¬ÐòÊýÁÐ{Pn}ΪµÈ²îÊýÁÐ
×ÛÉÏ£¬ÓÐÇîÊýÁÐ{an}µÄÐòÊýÁÐ{Pn}ΪµÈ²îÊýÁеijäÒªÌõ¼þÊÇÓÐÇîÊýÁÐ{an}Ϊµ¥µ÷ÊýÁÐ
£¨2£©½â£ºÓÉÌâÒâµÃ£¬
ÒòΪbn=n•£¨$\frac{3}{5}$£©n£¨n¡ÊN*£©
ËùÒÔbn+1-bn=$\frac{3-2n}{5}$•£¨$\frac{3}{5}$£©n
µ±n¡Ý2ʱ£¬bn+1-bn£¼0¼´bn+1£¼bn
b1=$\frac{3}{5}$£¬b2=$\frac{18}{25}$£¬b3=$\frac{81}{125}$£¬b4=$\frac{324}{625}$
b2£¾b3£¾b1£¾b4£¾b5£¾¡£¾bn-1£¾bn
ÓÖÒòΪcn=-n2+tn£¨n¡ÊN*£©£¬ÇÒ{bn}µÄÐòÊýÁÐÓë{cn}µÄÐòÊýÁÐÏàͬ
ËùÒÔc2£¾c3£¾c1£¾c4£¾c5£¾¡£¾cn-1£¾cn
ÓÖÒòΪc1=t-1£¬c2=2t-4£¬c3=3t-9
ËùÒÔ2t-4£¾3t-9£¾t-1
ËùÒÔ4£¼t£¼5¼´t¡Ê£¨4£¬5£©
£¨3£©½â£ºÓÉÌâÒâµÃ£¬d2n+1-d2n-1£¾0
ËùÒÔd2n+1-d2n+d2n-d2n-1£¾0
ÓÖÒòΪ|d2n+1-d2n|=$£¨\frac{1}{2}£©^{2n}$£¼|d2n-d2n-1|=$£¨\frac{1}{2}£©^{2n-1}$
ËùÒÔd2n-d2n-1£¾0£¬¼´d2n-d2n-1=$£¨\frac{1}{2}£©^{2n-1}$=$\frac{£¨-1£©^{2n}}{{2}^{2n-1}}$¢Ù
d2n+1-d2n£¼0£¬d2n+1-d2n=$-£¨\frac{1}{2}£©^{2n}$=$\frac{£¨-1£©^{2n+1}}{{2}^{n}}$¢Ú
ÕûÀí¢Ù¢ÚµÃdn+1-dn=$\frac{£¨-1£©^{n+1}}{{2}^{n}}$
ÁîÊýÁÐBn=dn+1-dnÔòÊýÁÐ{Bn}ÊÇÒÔ$\frac{1}{2}$ΪÊ×Ï࣬$-\frac{1}{2}$Ϊ¹«±ÈµÄµÈ±ÈÊýÁУ¬ËùÒÔ{Bn}µÄǰn-1ÏîºÍΪTn-1=$\frac{\frac{1}{2}£¨1-£¨-\frac{1}{2}£©^{n-1}£©}{1-£¨-\frac{1}{2}£©}$=$\frac{1}{3}-\frac{1}{3}£¨-\frac{1}{2}£©^{n-1}$
ËùÒÔdn=d1+Tn-1=$\frac{4}{3}+\frac{1}{3}\frac{£¨-1£©^{n}}{{2}^{n-1}}$
µãÆÀ ±¾Ì⣨1£©ÊÇÒÔÊýÁÐΪ¿ò¼Ü¶Ô³äÒªÌõ¼þ½øÐп¼²ì£¬ÒªÇóѧÉúÒªÓÐÑϽ÷µÄÂ߼˼ά£»£¨2£©ÀûÓú¯Êý˼Ï뿼²ìÁËÊýÁеĵ¥µ÷ÐÔ£¬ÒªÇóѧÉú×¢Òâϸ½Ú£»£¨3£©ÄѶȽϴó£¬ÀûÓÃת»¯Ó뻯¹é˼Ï룬µÃµ½ÊýÁÐ{dn+1-dn}ΪµÈ±ÈÊýÁУ¬ÀûÓõþ¼ÓÇóºÍ·½·¨¼ä½ÓÇóµÃÊýÁÐ{dn}µÄͨÏʽ£®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com