精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=[x3+(a-1)x2-ax+a]ex,若x=0是f(x)的一个极大值点,则实数a的取值范围为(2,+∞).

分析 求导数得到f′(x)=-x[x2+(2+a)x+a-2]ex,容易判断方程x2+(2+a)x+a-2=0有两个不同实数根,并设g(x)=x2+(2+a)x+a-2,根据题意便可得到g(0)>0,从而便可得出实数a的取值范围.

解答 解:解:f′(x)=-x[x2+(2+a)x+a-2]ex
令x2+(2+a)x+a-2=0,则△=a2+12>0;
设g(x)=x2+(2+a)x+a-2,∵x=0是f(x)的一个极大值点;
∴g(0)>0;
即a-2>0;
∴a>2;
∴实数a的取值范围为(2,+∞).
故答案为:(2,+∞).

点评 考查函数极大值点的定义,以及根据导数符号判断函数极大值点的方法和过程,一元二次方程的根的情况和判别式△取值的关系,要熟悉二次函数的图象.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.观察下面的数表

该表中第6行最后一个数是126;设2016是该表的m行第n个数,则m+n=507.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.过抛物线C:y2=4x的焦点F的直线l交C于A,B两点,点M(-1,2),若$\overrightarrow{MA}$•$\overrightarrow{MB}$=0,则直线l的斜率k=(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知点F1是抛物线C:x2=4y的焦点,点F2为抛物线C的对称轴与其准线的交点,过F2作抛物线C的切线,切点为A,若点A恰好在以F1,F2为焦点的双曲线上,则双曲线的离心率为$\sqrt{2}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知点C(x0,y0)是抛物线y2=4x上的动点,以C为圆心的圆过该抛物线的焦点F,且圆C与直线x=-$\frac{1}{2}$相交于A,B两点.
(Ⅰ)当|FC|=3时,求|AB|;
(Ⅱ)求|FA|•|FB|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知有穷数列{an}各项均不相等,将{an}的项从大到小重新排序后相应的项数构成新数列{Pn},称{Pn}为{an}的“序数列”,例如数列:a1,a2,a3满足a1>a3>a2,则其序数列{Pn}为1,3,2.
(1)求证:有穷数列{an}的序数列{Pn}为等差数列的充要条件是有穷数列{an}为单调数列;
(2)若项数不少于5项的有穷数列{bn},{cn}的通项公式分别是bn=n•($\frac{3}{5}$)n(n∈N*),cn=-n2+tn(n∈N*),且{bn}的序数列与{cn}的序数列相同,求实数t的取值范围;
(3)若有穷数列{dn}满足d1=1,|dn+1-dn|=($\frac{1}{2}$)n(n∈N*),且{d2n-1}的序数列单调减,{d2n}的序数列单调递增,求数列{dn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.计算下式的值$|\begin{array}{l}{1}&{3}\\{2}&{4}\end{array}|$+$|\begin{array}{l}{-1}&{0}\\{2}&{4}\end{array}|$=-6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知奇函数f(x)在[-1,0]上为增函数,又α、β为锐角三角形两内角,则下列结论正确的是(  )
A.f(cos α)>f(cos β)B.f(sin α)>f(sin β)C.f(sin α)>f(cos β)D.f(sin α)<f(cos β)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.把二进制111011(2)化为十进制数,则此数为(  )
A.57B.58C.59D.60

查看答案和解析>>

同步练习册答案