精英家教网 > 高中数学 > 题目详情
12.平面直角坐标系中有A(0,1),B(2,1),C(3,4),D(-1,2)四点,求过A,B,C三点的圆的方程,并判断点D与圆的位置关系.

分析 利用待定系数法设出圆的一般方程,利用点和圆心的距离和半径的关系进行判断即可.

解答 解:设圆的一般方程为x2+y2+Dx+Ey+F=0,
∵圆过A,B,C,
∴$\left\{\begin{array}{l}{1+E+F=0}\\{4+1+2D+E+F=0}\\{9+16+3D+4E+F=0}\end{array}\right.$得D=-2,E=-6,F=5,
则圆的一般方程为x2+y2-2x-6y+5=0,
即标准方程为(x-1)2+(y-3)2=5,
则圆心M(1,3),半径R=$\sqrt{5}$,
则|DM|=$\sqrt{(-1-1)^{2}+(3-2)^{2}}$=$\sqrt{4+1}=\sqrt{5}$=R,
即点D在圆上.

点评 本题主要考查圆的一般方程的求解以及点和圆的位置关系的判断,利用待定系数法求出圆的方程是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.设函数f(x)=$\frac{1}{2}$sin(2x-$\frac{π}{3}$),则该函数的最小正周期为π,值域为[-$\frac{1}{2}$,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知点A是抛物线C:y2=2px(p>0)与圆D:x2+(y-4)2=a2在第一象限内的公共点,且A到C的焦点F距离是a.若C上一点P到其准线距离与圆心D距离之和的最小值是2a,则a=(  )
A.2B.$\frac{{2\sqrt{3}}}{3}$C.$\frac{{3\sqrt{2}}}{2}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列各角中与$\frac{2π}{3}$终边相同的一个是(  )
A.$\frac{π}{3}$B.-$\frac{2π}{3}$C.-$\frac{4π}{3}$D.$\frac{5π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若$\overrightarrow a$=(x,2),$\overrightarrow b$=(3,4)且$\overrightarrow a$•$\overrightarrow b$=9,则x=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设$\overrightarrow{a}$=(3,-2,-1)是直线l的方向向量,$\overrightarrow{n}$=(-1,-2,1)是平面α的法向量,则直线l与平面α(  )
A.垂直B.平行或在平面α内C.平行D.在平面α内

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.用长4厘米,宽2厘米,高1厘米的长方体拼成一个正方体,至少要用(  )
A.2个B.4个C.8个D.16个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在用反证法证明命题“已知:x∈R,a=x2+$\frac{1}{2}$,b=2-x,c=x2-x+1,求证:a,b,c至少有一个不小于1”时,假设正确的是(  )
A.假设a,b,c都不小于1B.假设a,b,c都小于1
C.假设a,b,c不都大于等于1D.假设a,b,c不都小于1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设△ABC的内角A,B,C的对边分别为a,b,c,且a,b,2c成等比数列,则角B的取值范围是(  )
A.(0,$\frac{π}{6}$]B.(0,$\frac{π}{3}$]C.(0,$\frac{π}{2}$]D.[$\frac{π}{6}$,π)

查看答案和解析>>

同步练习册答案