精英家教网 > 高中数学 > 题目详情
17.袋中有大小形状都相同的4个黑球和2个白球.如果不放回地依次取出2球,那么在第1次取到的是黑球的条件下,第2次取到黑球的概率为(  )
A.$\frac{1}{2}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{2}{3}$

分析 设事件A表示“第一次取出黑球”,事件B表示“第二次取出黑球”,则P(A)=$\frac{4}{6}=\frac{2}{3}$,P(AB)=$\frac{4}{6}×\frac{3}{5}$=$\frac{2}{5}$,由此利用条件概率计算公式能求出在第1次取到的是黑球的条件下,第2次取到黑球的概率.

解答 解:设事件A表示“第一次取出黑球”,事件B表示“第二次取出黑球”,
P(A)=$\frac{4}{6}=\frac{2}{3}$,P(AB)=$\frac{4}{6}×\frac{3}{5}$=$\frac{2}{5}$,
∴在第1次取到的是黑球的条件下,第2次取到黑球的概率为:
P(B|A)=$\frac{P(AB)}{P(A)}$=$\frac{3}{5}$.
故选:C

点评 本题考查概率的求法,考查条件概率等基础知识,考查推理论能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知|$\overrightarrow{AB}$|=3,|$\overrightarrow{AC}$|=4,$\overrightarrow{AB}$与$\overrightarrow{AC}$的夹角为60°.求:
(1)|$\overrightarrow{AB}$-$\overrightarrow{AC}$|;
(2)$\overrightarrow{AB}$与$\overrightarrow{AB}$-$\overrightarrow{AC}$的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.复数z=i(2+i)的共扼复数对应的点所在象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设△ABC中的内角A、B、C的边分别为a,b,c,若c=2$\sqrt{3}$,sinB=2sinA,C=$\frac{π}{3}$.
(1)求a,b的值;
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.曲线y=a$\sqrt{x}$(a>0)与y=ln$\sqrt{x}$有公共点,且在公共点处的切线相同,则a=$\frac{1}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.利用反证法证明“若x2+y2=0,则x=0且y=0”时,下列假设正确的是(  )
A.x≠0且y≠0B.x=0且y≠0C.x≠0或y≠0D.x=0或y=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图程序框图是为了计算和式$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+$\frac{1}{8}$+$\frac{1}{10}$+$\frac{1}{12}$的值,那么在空白框中,可以填入(  )
A.i≤7?B.i≤6?C.i≥6?D.i≥7?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知直线y=3-x与两坐标轴围成的区域为Ω1,不等式组$\left\{\begin{array}{l}{x+y≤3}\\{x≥0}\\{2x-y≤0}\end{array}\right.$所形成的区域为Ω2,在区域Ω1中随机放置一点,则该点落在区域Ω2的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.要描述一工厂某产品的生产工艺,应用(  )
A.程序框图B.组织结构图C.知识结构图D.工序流程图

查看答案和解析>>

同步练习册答案