精英家教网 > 高中数学 > 题目详情
2.利用反证法证明“若x2+y2=0,则x=0且y=0”时,下列假设正确的是(  )
A.x≠0且y≠0B.x=0且y≠0C.x≠0或y≠0D.x=0或y=0

分析 熟记反证法的步骤,直接填空即可.反面有多种情况,需一一否定.

解答 解:用反证法证明“若x2+y2=0,则x=0且y=0”时,应先假设x≠0或y≠0.
故选:C.

点评 此题主要考查了反证法的第一步,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:
(1)假设结论不成立;
(2)从假设出发推出矛盾;
(3)假设不成立,则结论成立.
在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.若变量x,y满足约束条件$\left\{\begin{array}{l}{x+y-2≥0}\\{x-2y+6≥0}\\{x≤2}\end{array}\right.$,则z=(x-1)2+y2的最大值为(  )
A.4B.$\sqrt{17}$C.17D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为120°,|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,则|2$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{21}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.观察下列等式:
23-13=3×2×1+1,
33-23=3×3×2+1,
43-33=3×4×3+1,

照此规律,第n(n∈N*)个等式可为(n+1)3-n3=3×(n+1)n+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.袋中有大小形状都相同的4个黑球和2个白球.如果不放回地依次取出2球,那么在第1次取到的是黑球的条件下,第2次取到黑球的概率为(  )
A.$\frac{1}{2}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.△ABC外接圆的半径为1,圆心为O,且2$\overrightarrow{OC}$+$\overrightarrow{CB}$+$\overrightarrow{CA}$=0,|$\overrightarrow{OC}$|=|$\overrightarrow{CB}$|,则$\overrightarrow{AC}$•$\overrightarrow{AB}$等于(  )
A.$\frac{3}{2}$B.$\sqrt{3}$C.3D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知向量$\overrightarrow{a}$=(2cos$\frac{ωx}{2}$,$\sqrt{3}$sin$\frac{ωx}{2}$),$\overrightarrow{b}$=(cos$\frac{ωx}{2}$,2cos$\frac{ωx}{2}$),(ω>0),设函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,且f(x)的最小正周期为π.
(1)求函数f(x)的表达式;
(2)求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,F为抛物线y2=2px(p>0)的焦点,经过F点作倾斜角为锐角的直线l,与准线及抛物线的交点自下至上依次为P,A,B,且$\overrightarrow{PA}$=2$\overrightarrow{AF}$.
(Ⅰ)求直线l的斜率;
(Ⅱ)若M为抛物线弧AOB(不含端点)上的一个动点,当△MAB的面积的最大值为$\sqrt{3}$时,求p的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=2log2(2x+1)-x.
(1)求证:f(x)是偶函数:
(2)设以g(x)=2f(x)+x+m•2x,x∈[0,log23],是否存在实数m,使得g(x)的最小值为0,若存在,求出m的值,若不存在,说明理由.

查看答案和解析>>

同步练习册答案