精英家教网 > 高中数学 > 题目详情
7.△ABC外接圆的半径为1,圆心为O,且2$\overrightarrow{OC}$+$\overrightarrow{CB}$+$\overrightarrow{CA}$=0,|$\overrightarrow{OC}$|=|$\overrightarrow{CB}$|,则$\overrightarrow{AC}$•$\overrightarrow{AB}$等于(  )
A.$\frac{3}{2}$B.$\sqrt{3}$C.3D.2$\sqrt{3}$

分析 利用向量的运算法则将已知等式化简得到$\overrightarrow{OB}=-\overrightarrow{OA}$,得到AB为直径,故△ABC为直角三角形,求出三边长可得A 的值,利用两个向量的数量积的定义求得答案.

解答 解:∵2$\overrightarrow{OC}$+$\overrightarrow{CB}$+$\overrightarrow{CA}$=$\overrightarrow{0}$,
∴$\overrightarrow{OC}+\overrightarrow{CB}+\overrightarrow{OC}+\overrightarrow{CA}=\overrightarrow{0}$,
∴$\overrightarrow{OB}=-\overrightarrow{OA}$,则O,B,A共线,
∴AB为圆的直径,则AC⊥BC,
又△ABC外接圆的半径为1,圆心为O,且|$\overrightarrow{OC}$|=|$\overrightarrow{CB}$|,
∴∠A=30°,BC=1,AC=$\sqrt{3}$,
∴$\overrightarrow{AC}•\overrightarrow{AB}$=|$\overrightarrow{AC}$||$\overrightarrow{AB}$|cos30°=$\sqrt{3}×2×\frac{\sqrt{3}}{2}=3$.
故选:C.

点评 本题主要考查向量在几何中的应用、向量的数量积,向量垂直的充要条件等基本知识,求出△ABC为直角三角形及三边长是解题的关键,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.下列函数中,既是奇函数又存在零点的是(  )
A.y=2+sinxB.y=cosxC.y=lnxD.y=ex-e-x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.定义在R上的奇函数f(x)满足f(-1)=0,且当x>0时,f(x)>xf′(x),则下列关系式中成立的是(  )
A.4f($\frac{1}{2}$)>f(2)B.4f($\frac{1}{2}$)<f(2)C.f($\frac{1}{2}$)>4f(2)D.f($\frac{1}{2}$)f(2)>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知实数x,y满足$\left\{\begin{array}{l}{2x-y+4≥0}\\{x+y-4≤0}\\{y≥0}\end{array}\right.$,则z=|x|-y的取值范围是(  )
A.[-2,4]B.[-2,2]C.[-4,4]D.[-4,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.利用反证法证明“若x2+y2=0,则x=0且y=0”时,下列假设正确的是(  )
A.x≠0且y≠0B.x=0且y≠0C.x≠0或y≠0D.x=0或y=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知复数z满足(1+2i)z=3+4i,则|$\overline{z}$|等于(  )
A.2B.5C.$\frac{\sqrt{5}}{5}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.函数f(x)=2sin(2x+$\frac{π}{6}$)+a+1(a∈R,a为常数),f(x)在[-$\frac{π}{6}$,$\frac{5π}{12}$]上的最大值与最小值之和为3.
(1)求f(x)的最小正周期及a的值
(2)求不等式f(x)≥2的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知:f(x)=2sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)且f(x)在区间[$\frac{5π}{12}$,$\frac{11π}{12}$]上单调递减,对任意的x1,x2∈[$\frac{5π}{12}$,$\frac{11π}{12}$],|f(x1)-f(x2)|的最大值为4.
(1)求ω和φ的值;
(2)若α,β∈[0,$\frac{2π}{3}$]且f(α)=f(β)=1,求cos$\frac{α+β}{2}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列关于正态分布叙述不正确的是(  )
A.正态曲线y=φμ,σ(x)关于直线x=μ对称
B.正态曲线与x轴之间的面积是1
C.正态分布随机变量等于一个特定实数的概率是0
D.正态曲线在对称轴处取得最大值$\frac{1}{\sqrt{2π}}$

查看答案和解析>>

同步练习册答案