精英家教网 > 高中数学 > 题目详情
15.已知实数x,y满足$\left\{\begin{array}{l}{2x-y+4≥0}\\{x+y-4≤0}\\{y≥0}\end{array}\right.$,则z=|x|-y的取值范围是(  )
A.[-2,4]B.[-2,2]C.[-4,4]D.[-4,2]

分析 先画出满足条件的平面区域,通过讨论x的范围,求出直线的表达式,结合图象从而求出z的范围.

解答 解:画出满足实数x,y满足$\left\{\begin{array}{l}{2x-y+4≥0}\\{x+y-4≤0}\\{y≥0}\end{array}\right.$的平面区域,如图示:A(0,4),B(-2,0),C(4,0).
z=|x|-y=$\left\{\begin{array}{l}{x-y,x≥0}\\{-x-y,x<0}\end{array}\right.$,
当M(x,y)位于D中y轴的右侧包括y轴时,平移直线:x-y=0,可得x+y∈[-4,4],
当M(x,y)位于D中y轴左侧,平移直线-x-y=0,可得z=-x-y∈(2,4].
所以z=|x|-y的取值范围为:[-4,4].
故选:C.

点评 本题考查了简单的线性规划问题,考查数形结合思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.设有以下四个命题:①底面是平行四边形的四棱柱是平行六面体;②底面是矩形的平行六面体是长方体;③直四棱柱是直平行六面体;④棱台的相对侧棱延长后必交于一点.其中真命题的序号是①④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知tanθ=2,则$\frac{cosθ+sinθ}{cosθ-sinθ}$=(  )
A.3B.-3C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)=3$\sqrt{2}$cos(x+φ)+sinx,x∈R,φ∈(-$\frac{π}{2}$,$\frac{π}{2}$)的图象过点($\frac{π}{2}$,4),则f(x)的最小值为-5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.观察下列等式:
23-13=3×2×1+1,
33-23=3×3×2+1,
43-33=3×4×3+1,

照此规律,第n(n∈N*)个等式可为(n+1)3-n3=3×(n+1)n+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若双曲线$\frac{{x}^{2}}{8}$-y2=1的左焦点在抛物线y2=2px(p>0)的准线上,则p的值为(  )
A.$\sqrt{7}$B.3C.2$\sqrt{7}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.△ABC外接圆的半径为1,圆心为O,且2$\overrightarrow{OC}$+$\overrightarrow{CB}$+$\overrightarrow{CA}$=0,|$\overrightarrow{OC}$|=|$\overrightarrow{CB}$|,则$\overrightarrow{AC}$•$\overrightarrow{AB}$等于(  )
A.$\frac{3}{2}$B.$\sqrt{3}$C.3D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.两灯塔A,B与海洋观察站C的距离都为a,灯塔A在C的北偏东30°,B在C的南偏东60°,则A,B两灯塔之间距离为(  )
A.2aB.$\sqrt{3}$aC.$\sqrt{2}$aD.a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在平面直角坐标系中,以原点为极点,x轴为极轴建立极坐标系,曲线C1的方程为$\left\{\begin{array}{l}x=\sqrt{2}cosθ\\ y=sinθ\end{array}\right.$(θ为参数),曲线C2的方程为$\left\{\begin{array}{l}{x=-1-\frac{\sqrt{2}}{2}t}\\{y=2+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),若曲线C1与C2相交于A、B两点.
(Ⅰ)求C1的普通方程,C2的极坐标方程;
(Ⅱ)求点M(-1,2)到A、B两点的距离之积.

查看答案和解析>>

同步练习册答案