精英家教网 > 高中数学 > 题目详情
10.观察下列等式:
23-13=3×2×1+1,
33-23=3×3×2+1,
43-33=3×4×3+1,

照此规律,第n(n∈N*)个等式可为(n+1)3-n3=3×(n+1)n+1.

分析 由已知中的等式,分析等式两边各项的变化规律,可得(n+1)3-n3=3×(n+1)×n+1.

解答 解:由已知中等式:
23-13=3×2×1+1
33-23=3×3×2+1
43-33=3×4×3+1

所以第n(n∈N*)个等式可为(n+1)3-n3=3×(n+1)n+1;
故答案为:(n+1)3-n3=3×(n+1)n+1.

点评 本题考查的知识点是归纳推理,数列求和,其中根据已知中的等式分析出各式子与对应序号的关系,发现规律,正确总结规律.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.在等比数列{an}中,若an>an+1,且a7•a14=6,a4+a17=5,则$\frac{a_5}{{{a_{18}}}}$=(  )
A.$\frac{3}{2}$B.$\frac{2}{3}$C.$\frac{1}{6}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知圆C经过点A(1,3),B(2,2),并且直线m:3x-2y=0平分圆C.
(1)求圆C的方程;
(2)若直线l:y=kx+2与圆C交于M,N两点,是否存在直线l,使得$\overrightarrow{OM}$•$\overrightarrow{ON}$=6(O为坐标原点),若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.定义在R上的奇函数f(x)满足f(-1)=0,且当x>0时,f(x)>xf′(x),则下列关系式中成立的是(  )
A.4f($\frac{1}{2}$)>f(2)B.4f($\frac{1}{2}$)<f(2)C.f($\frac{1}{2}$)>4f(2)D.f($\frac{1}{2}$)f(2)>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设△ABC中的内角A、B、C的边分别为a,b,c,若c=2$\sqrt{3}$,sinB=2sinA,C=$\frac{π}{3}$.
(1)求a,b的值;
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知实数x,y满足$\left\{\begin{array}{l}{2x-y+4≥0}\\{x+y-4≤0}\\{y≥0}\end{array}\right.$,则z=|x|-y的取值范围是(  )
A.[-2,4]B.[-2,2]C.[-4,4]D.[-4,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.利用反证法证明“若x2+y2=0,则x=0且y=0”时,下列假设正确的是(  )
A.x≠0且y≠0B.x=0且y≠0C.x≠0或y≠0D.x=0或y=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.函数f(x)=2sin(2x+$\frac{π}{6}$)+a+1(a∈R,a为常数),f(x)在[-$\frac{π}{6}$,$\frac{5π}{12}$]上的最大值与最小值之和为3.
(1)求f(x)的最小正周期及a的值
(2)求不等式f(x)≥2的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x+a$\sqrt{x}$-$\frac{1}{2}$lnx(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线经过点(2,3),求a的值:
(2)若f(x)在区间($\frac{1}{4}$,1)上存在极值点,判断该极值点是极大值点还是极小值点,并求a的取值范围;
(3)若当x>0时,f(x)>0恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案