分析 (1)求出f(x)与g(x)的定义域,分别确定出A与B,找出两集合的交集即可;
(2)根据A与B的交集,确定出m的范围即可.
解答 解:(1)由题意得:$\left\{\begin{array}{l}4x+5-{x^2}≥0\\ x+1≠0\end{array}\right.$,
解得:-1<x≤5,即A={x|-1<x≤5},
当m=3时,则-x2+2x+3>0,得B={x|-1<x<3},
∴A∩B={x|-1<x<3};
(2)∵A={x|-1<x≤5},B={x|-x2+2x+m>0},A∩B={x|-1<x<4},
∴4为方程-x2+2x+m=0的根,
∴-42+2×4+m=0,
解得:m=8,
此时B={x|-2<x<4},符合题意.
则实数m=8.
点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y′=3(a-bx) | B. | y′=2-3b(a-bx)2 | C. | y′=-3b(a-bx)2 | D. | y′=3b(a-bx)2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,0)∪(0,2] | B. | [-2,0)∪(0,2] | C. | [-2,2] | D. | (-1,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{27}$ | B. | $\frac{1}{3}$ | C. | $\frac{13}{27}$ | D. | $\frac{14}{27}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com