精英家教网 > 高中数学 > 题目详情
18.已知非常数列{an}的通项公式满足6an+1-3an=2.
(1)求证:{an-$\frac{2}{3}$}是等比数列;
(2)当a1=$\frac{7}{6}$时,求数列{an}的通项公式.

分析 (1)通过对6an+1-3an=2变形可知an+1-$\frac{2}{3}$=$\frac{1}{2}$(an-$\frac{2}{3}$),进而可知数列{an-$\frac{2}{3}$}是以$\frac{1}{2}$为公比的等比数列;
(2)通过a1=$\frac{7}{6}$可知a1-$\frac{2}{3}$=$\frac{1}{2}$,进而可知数列{an-$\frac{2}{3}$}是以首项、公比均为$\frac{1}{2}$的等比数列,计算即得结论.

解答 (1)证明:∵6an+1-3an=2,
∴an+1-$\frac{2}{3}$=$\frac{1}{2}$(an-$\frac{2}{3}$),
∴数列{an-$\frac{2}{3}$}是以$\frac{1}{2}$为公比的等比数列;
(2)解:∵a1=$\frac{7}{6}$,
∴a1-$\frac{2}{3}$=$\frac{7}{6}$-$\frac{2}{3}$=$\frac{1}{2}$,
∴数列{an-$\frac{2}{3}$}是以首项、公比均为$\frac{1}{2}$的等比数列,
∴an-$\frac{2}{3}$=$\frac{1}{{2}^{n}}$,
∴数列{an}的通项公式an=$\frac{2}{3}$+$\frac{1}{{2}^{n}}$.

点评 本题考查数列的通项及前n项和,考查运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.设a>1,b>1且ab+a-b-10=0,a+b的最小值为m,记满足2x2+y2≤m的所有整点坐标为(xi,yi)(i=1,2,3,…,n),则$\underset{\stackrel{n}{∑}}{i=1}$|xiyi|=12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求所有的m∈R,使得mx2+8(m-1)x+7m-16≤0至多有6个整数解,且其中有一个为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若正四面体(四个面都是正三角形的三棱锥)的棱长为6,求它的内切球的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.请画出直观图.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若方程1-2cos2x-sinx+a=0有实数解,则实数a的取值范围是[-2,$\frac{9}{8}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.数列1,$\frac{1}{2}$,$\frac{2}{2}$,$\frac{1}{3}$,$\frac{2}{3}$,$\frac{3}{3}$,…,$\frac{1}{n}$,$\frac{2}{n}$,…,$\frac{n}{n}$,…的前18项和为11.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.数列{an}前n项和Sn=npan(n∈N),且a1≠a2,则常数p的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知⊙O:x2+y2=9,过圆外一点P作⊙O的两条切线,切点分别为A、B.
(1)若点P(4,-3),求直线AB的方程;
(2)若点P(x,y)为动点,且∠APB=$\frac{π}{2}$,求点P的轨迹方程.

查看答案和解析>>

同步练习册答案