精英家教网 > 高中数学 > 题目详情

(本题满分14分)如图,在正方体ABCDA1B1C1D1中,EF为棱ADAB的中点.

(1)求证:EF∥平面CB1D1
(2)求证:平面CAA1C1⊥平面CB1D1

(1)连结BD.在长方体中,对角线.又 EF为棱ADAB的中点, . . 又B1D1平面平面 EF∥平面CB1D1.(2)因为 在长方体中,AA1⊥平面A1B1C1D1,而B1D1平面A1B1C1D1 AA1B1D1.又因为在正方形A1B1C1D1中,A1C1B1D1 B1D1⊥平面CAA1C1.   又因为B1D1平面CB1D1平面CAA1C1⊥平面CB1D1

解析试题分析:(1)证明:连结BD.在长方体中,对角线.
 EF为棱ADAB的中点, .
. 又B1D1平面平面 EF∥平面CB1D1.
(2)因为 在长方体中,AA1⊥平面A1B1C1D1,而B1D1平面A1B1C1D1 AA1B1D1.又因为在正方形A1B1C1D1中,A1C1B1D1
 B1D1⊥平面CAA1C1.   又因为B1D1平面CB1D1平面CAA1C1⊥平面CB1D1
考点:本题考查了空间中的线面关系
点评:证明立体几何问题常常利用几何方法,通过证明或找到线面之间的关系,依据判定定理或性质进行证明求解

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图:在三棱锥D-ABC中,已知是正三角形,AB平面BCD,,E为BC的中点,F在棱AC上,且

(1)求三棱锥DABC的表面积;
(2)求证AC⊥平面DEF
(3)若MBD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N的位置;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
如图,在四棱锥P—ABCD中,底面ABCD为直角梯形,AD∥BC,BAD=90°,PA底面ABCD,且PA=AD=AB=2BC=2,M、N分别为PC、PB的中点.

(Ⅰ)求证:PB平面ADMN;
(Ⅱ)求四棱锥P-ADMN的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,正方形所在平面与平面四边形所在平面互相垂直,△是等腰直角三角形,

(1)线段的中点为,线段的中点为,求证:
(2)求直线与平面所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图所示,已知S是正三角形ABC所在平面外的一点,且SA=SB=SC,SG为△SAB上的高,D、E、F分别是AC、BC、SC的中点,试判断SG与平面DEF的位置关系,并给予证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
四棱锥,面⊥面.侧面是以为直角顶点的等腰直角三角形,底面为直角梯形,,,上一点,且.

(Ⅰ)求证
(Ⅱ)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题12分)如图,平面,点上,,四边形为直角梯形,,

(1)求证:平面
(2)求二面角的余弦值;
(3)直线上是否存在点,使∥平面,若存在,求出点;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
在正四棱锥V - ABCD中,P,Q分别为棱VB,VD的中点, 点M在边BC上,且BM: BC = 1 : 3,AB =2,VA =" 6."

(I )求证CQ∥平面PAN;
(II)求证:CQ⊥AP.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,已知在四棱锥中,底面是矩形,平面的中点, 是线段上的点.

(I)当的中点时,求证:平面
(II)要使二面角的大小为,试确定点的位置.

查看答案和解析>>

同步练习册答案