精英家教网 > 高中数学 > 题目详情
17.在平面直角坐标系中,A,B分别是x轴和y轴上的动点,若以AB为直径的圆C与直线3x+y-4=0相切,则圆C面积的最小值为(  )
A.$\frac{5π}{4}$B.$\frac{2π}{5}$C.$(6-2\sqrt{5})π$D.$\frac{5π}{2}$

分析 由O向直线3x+y-4=0做垂线,垂足为D,当D恰为圆与直线的切点时,圆C的半径最小,此时圆的直径为O(0,0)到直线3x+y-4=0的距离,由此能求出圆C面积最小值.

解答 解:∵AB为直径,∠AOB=90°,
∴O点必在圆C上,
由O向直线3x+y-4=0做垂线,垂足为D,
则当D恰为圆与直线的切点时,圆C的半径最小,
此时圆的直径为O(0,0)到直线3x+y-4=0的距离d=$\frac{4}{\sqrt{10}}$,
∴此时圆的半径r=$\frac{1}{2}d$=$\frac{2}{\sqrt{10}}$,
∴圆C面积最小值Smin=πr2=$\frac{2π}{5}$.
故选:B.

点评 本题主要考查了直线与圆的位置关系,考查圆的面积的最小值的求法,是中档题,解题时要认真审题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知tan(π+x)=2
(1)求$\frac{2sinx-3cosx}{sinx+5cosx}$的值;  
(2)求$\frac{1}{{2{{sin}^2}x-sinxcosx+{{cos}^2}x}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若圆C的半径为1,圆心C与点(2,0)关于直线x+y-1=0对称,则圆C的标准方程为(  )
A.(x-1)2+(y+1)2=1B.(x-1)2+(y-1)2=1C.(x+1)2+(y+1)2=1D.(x+1)2+(y-1)2=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{a}$⊥$\overrightarrow{b}$,则$\overrightarrow{b}$可以为(  )
A.(1,2)B.(1,-2)C.(2,1)D.(2,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.央视记者柴静的《穹顶之下》的播出,让大家对雾霾天气的危害有了更进一步的认识,对于雾霾天气的研究也渐渐活跃起来,某研究机构对春节燃放烟花爆竹的天数x与雾霾天数y进行统计分析,得出表中数据.
x4578
y2356
(1)请画出表中数据的散点图;(画在答题卷上的坐标纸上)
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归直线方程$\hat y=\hat bx+\hat a$;
(3)试根据(2)求出线性回归方程,预测燃放烟花爆竹的天数为9的雾霾天数.
(相关公式:$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}}$,$\hat a=\overline y-\hat b\overline x$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)在[a,b]上有定义,若对任意x1,x2∈[a,b],有f($\frac{{x}_{1}+{x}_{2}}{2}$)≤$\frac{1}{2}$[f(x1)+f(x2)],则称f(x)在[a,b]上具有性质P.设f(x)在[1,3]上具有性质P,现给出如下题:
①f(x)在[1,3]上的图象时连续不断的  
②f(x)在[1,$\sqrt{3}$]上具有性质P
③若f(x)在x=2处取得最大值1,则f(x)=1,x∈[1,3]
④对任意x1,x2,x3,x4∈[1,3],有f($\frac{{x}_{1}+{x}_{2}+{x}_{3}+{x}_{4}}{4}$)≤$\frac{1}{4}$[f(x1)+f(x2)+f(x3)+f(x4)]
其中真命题的序号③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A=$\{x|y=\sqrt{{x^2}-x-6}\}$,集合B=$\{x|x=lo{g_{\frac{1}{2}}}a,a>1\}$,则(∁RA)∩B=(  )
A.{x|-3≤x<0}B.{x|-2≤x<0}C.{x|-3<x<0}D.{x|-2<x<0}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.给出5个函数:(1)y=3x-1,(2)y=x2+ax+b,(3)y=-2x,(4)y=-log2x,$(5)y=\sqrt{x}$.这些函数中满足:对定义域内任意的x1,x2min,都有f($\frac{{x}_{1}+{x}_{2}}{2}$)≤$\frac{f({x}_{1})+f({x}_{2})}{2}$成立的函数的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知4sin2x-6sinx-cos2x+3cosx=0,求-$\frac{co{s}^{2}x-si{n}^{2}x}{(1-co{s}^{2}x)(1-ta{n}^{2}x)}$的值.

查看答案和解析>>

同步练习册答案