·ÖÎö £¨1£©ÔËÓÃÍÖÔ²µÄÀëÐÄÂʹ«Ê½ºÍÅ×ÎïÏßµÄ×¼Ïß·½³Ì£¬ÓÉÍÖÔ²µÄ»ù±¾Á¿µÄ¹ØÏµ£¬¿ÉµÃa=2£¬b=1£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨2£©¢ÙÉèA£¨x1£¬y1£©£¬B£¨-x1£¬-y1£©£¬M£¨x2£¬y2£©£¬´úÈëÍÖÔ²·½³Ì£¬Ïà¼õ£¬ÔÙÓÉÖ±ÏßµÄбÂʹ«Ê½£¬»¯¼òÕûÀí¼´¿ÉµÃµ½¶¨Öµ£»
¢Ú|AM|=|BM|£¬¿ÉµÃOM¡Íl£¬µ±Ö±ÏßlµÄбÂʲ»´æÔÚ£¬ÇóµÃ½»µã£¬¿ÉµÃ¡÷ABMµÄÃæ»ý£»ÉèÖ±ÏßlµÄ·½³ÌΪy=kx£¬ÔòOMµÄ·½³ÌΪy=-$\frac{1}{k}$x£¬´úÈëÍÖÔ²·½³Ì£¬ÇóµÃ½»µãA£¬B£¬MµÄ×ø±ê£¬ÔËÓÃÈý½ÇÐεÄÃæ»ý¹«Ê½£¬ÒÔ¼°»»Ôª·¨ºÍ»ù±¾²»µÈʽ¼´¿ÉµÃµ½ËùÇó×îСֵºÍÖ±ÏßlµÄ·½³Ì£®
½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃe=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$£¬
Å×ÎïÏßy2=$\frac{16\sqrt{3}}{3}$xµÄ×¼Ïß·½³ÌΪx=-$\frac{4\sqrt{3}}{3}$£¬
¿ÉµÃ$\frac{{a}^{2}}{c}$=$\frac{4\sqrt{3}}{3}$£¬½âµÃa=2£®c=$\sqrt{3}$£¬b=$\sqrt{{a}^{2}-{c}^{2}}$=1£¬
¼´ÓÐÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{4}$+y2=1£»
£¨2£©¢ÙÖ¤Ã÷£ºÉèA£¨x1£¬y1£©£¬B£¨-x1£¬-y1£©£¬M£¨x2£¬y2£©£¬
¼´ÓÐ$\frac{{{x}_{1}}^{2}}{4}$+y12=1£¬$\frac{{{x}_{2}}^{2}}{4}$+y22=1£¬
Á½Ê½Ïà¼õ¿ÉµÃ$\frac{{{x}_{1}}^{2}-{{x}_{2}}^{2}}{4}$+£¨y12-y22£©=0£¬
¼´Îª$\frac{{{y}_{1}}^{2}-{{y}_{2}}^{2}}{{{x}_{1}}^{2}-{{x}_{2}}^{2}}$=-$\frac{1}{4}$£¬
Ôòk1k2=$\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$•$\frac{{y}_{2}+{y}_{1}}{{x}_{2}+{x}_{1}}$=$\frac{{{y}_{2}}^{2}-{{y}_{1}}^{2}}{{{x}_{2}}^{2}-{{x}_{1}}^{2}}$=-$\frac{1}{4}$£¬
¼´k1k2Ϊ¶¨Öµ-$\frac{1}{4}$£®
¢Ú|AM|=|BM|£¬¿ÉµÃOM¡Íl£¬
µ±Ö±ÏßlµÄбÂʲ»´æÔÚ£¬¿ÉµÃl£ºx=0£¬ÔòMΪÍÖÔ²µÄ³¤ÖáµÄ¶Ëµã£¬
¼´ÓС÷ABMµÄÃæ»ýΪab=2£»
ÉèÖ±ÏßlµÄ·½³ÌΪy=kx£¬ÔòOMµÄ·½³ÌΪy=-$\frac{1}{k}$x£¬
ÓÉ$\left\{\begin{array}{l}{y=kx}\\{{x}^{2}+4{y}^{2}=4}\end{array}\right.$½âµÃx=¡À$\frac{2}{\sqrt{1+4{k}^{2}}}$£¬y=¡À$\frac{2k}{\sqrt{1+4{k}^{2}}}$£¬
¼´ÓÐA£¨$\frac{2}{\sqrt{1+4{k}^{2}}}$£¬$\frac{2k}{\sqrt{1+4{k}^{2}}}$£©£¬B£¨-$\frac{2}{\sqrt{1+4{k}^{2}}}$£¬-$\frac{2k}{\sqrt{1+4{k}^{2}}}$£©£¬
½«k»»Îª-$\frac{1}{k}$£¬¿ÉÉèM£¨$\frac{2}{\sqrt{1+\frac{4}{{k}^{2}}}}$£¬$\frac{-\frac{2}{k}}{\sqrt{1+\frac{4}{{k}^{2}}}}$£©£¬
Ôò¡÷ABMµÄÃæ»ýΪS=$\frac{1}{2}$|OM|•|AB|=|OM|•|OA|
=$\sqrt{\frac{4£¨1+{k}^{2}£©}{1+4{k}^{2}}}$•$\sqrt{\frac{4£¨1+\frac{1}{{k}^{2}}£©}{1+\frac{4}{{k}^{2}}}}$=4$\sqrt{\frac{2+{k}^{2}+\frac{1}{{k}^{2}}}{17+4£¨{k}^{2}+\frac{1}{{k}^{2}}£©}}$£¬
Éèt=k2+$\frac{1}{{k}^{2}}$¡Ý2£¬ÔòS=4$\sqrt{\frac{2+t}{17+4t}}$=4$\sqrt{\frac{1}{4+\frac{9}{t+2}}}$¡Ý4$\sqrt{\frac{1}{4+\frac{9}{4}}}$=$\frac{8}{5}$£®
×ÛÉϿɵ㬵±k=¡À1¼´Ö±ÏßlµÄ·½³ÌΪy=¡Àx£¬¡÷ABMµÄÃæ»ýÈ¡µÃ×îСֵ$\frac{8}{5}$£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌµÄÇ󷨣¬×¢ÒâÔËÓÃÀëÐÄÂʹ«Ê½ºÍÅ×ÎïÏßµÄ×¼Ïß·½³Ì£¬¿¼²éÖ±ÏßµÄбÂʹ«Ê½µÄÔËÓú͵ãÂú×ãÍÖÔ²·½³Ì£¬Í¬Ê±¿¼²é»»Ôª·¨ºÍ»ù±¾²»µÈʽµÄÔËÓãºÇó×îÖµ£¬¿¼²é»¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | p¡Åq | B£® | ©Vp¡Åq | C£® | ©Vp¡Äq | D£® | p¡Äq |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 42ÖÖ | B£® | 72ÖÖ | C£® | 84ÖÖ | D£® | 144ÖÖ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com