19£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£¬ÇÒÒ»Ìõ×¼ÏßÓëÅ×ÎïÏßy2=$\frac{16\sqrt{3}}{3}$xµÄ×¼ÏßÖØºÏ£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©¹ýÔ­µã×÷Ö±Ïßl½»ÍÖÔ²ÓÚA¡¢BÁ½µã£¬MΪÍÖÔ²ÉÏÒìÓÚµãA¡¢BµÄÒ»µã£®
ÈôÖ±ÏßAMºÍBM¾ù²»´¹Ö±ÓÚxÖᣬÇÒËüÃǵÄбÂÊ·Ö±ðΪk1ºÍk2£¬ÇóÕú£ºk1k2Ϊ¶¨Öµ£¬²¢Çó³ö¸Ã¶¨Öµ£»
¢ÚÈô|AM|=|BM|£¬Çó¡÷ABMµÄÃæ»ýµÄ×îСֵÒÔ¼°´ËʱֱÏßlµÄ·½³Ì£®

·ÖÎö £¨1£©ÔËÓÃÍÖÔ²µÄÀëÐÄÂʹ«Ê½ºÍÅ×ÎïÏßµÄ×¼Ïß·½³Ì£¬ÓÉÍÖÔ²µÄ»ù±¾Á¿µÄ¹ØÏµ£¬¿ÉµÃa=2£¬b=1£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨2£©¢ÙÉèA£¨x1£¬y1£©£¬B£¨-x1£¬-y1£©£¬M£¨x2£¬y2£©£¬´úÈëÍÖÔ²·½³Ì£¬Ïà¼õ£¬ÔÙÓÉÖ±ÏßµÄбÂʹ«Ê½£¬»¯¼òÕûÀí¼´¿ÉµÃµ½¶¨Öµ£»
¢Ú|AM|=|BM|£¬¿ÉµÃOM¡Íl£¬µ±Ö±ÏßlµÄбÂʲ»´æÔÚ£¬ÇóµÃ½»µã£¬¿ÉµÃ¡÷ABMµÄÃæ»ý£»ÉèÖ±ÏßlµÄ·½³ÌΪy=kx£¬ÔòOMµÄ·½³ÌΪy=-$\frac{1}{k}$x£¬´úÈëÍÖÔ²·½³Ì£¬ÇóµÃ½»µãA£¬B£¬MµÄ×ø±ê£¬ÔËÓÃÈý½ÇÐεÄÃæ»ý¹«Ê½£¬ÒÔ¼°»»Ôª·¨ºÍ»ù±¾²»µÈʽ¼´¿ÉµÃµ½ËùÇó×îСֵºÍÖ±ÏßlµÄ·½³Ì£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃe=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$£¬
Å×ÎïÏßy2=$\frac{16\sqrt{3}}{3}$xµÄ×¼Ïß·½³ÌΪx=-$\frac{4\sqrt{3}}{3}$£¬
¿ÉµÃ$\frac{{a}^{2}}{c}$=$\frac{4\sqrt{3}}{3}$£¬½âµÃa=2£®c=$\sqrt{3}$£¬b=$\sqrt{{a}^{2}-{c}^{2}}$=1£¬
¼´ÓÐÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{4}$+y2=1£»
£¨2£©¢ÙÖ¤Ã÷£ºÉèA£¨x1£¬y1£©£¬B£¨-x1£¬-y1£©£¬M£¨x2£¬y2£©£¬
¼´ÓÐ$\frac{{{x}_{1}}^{2}}{4}$+y12=1£¬$\frac{{{x}_{2}}^{2}}{4}$+y22=1£¬
Á½Ê½Ïà¼õ¿ÉµÃ$\frac{{{x}_{1}}^{2}-{{x}_{2}}^{2}}{4}$+£¨y12-y22£©=0£¬
¼´Îª$\frac{{{y}_{1}}^{2}-{{y}_{2}}^{2}}{{{x}_{1}}^{2}-{{x}_{2}}^{2}}$=-$\frac{1}{4}$£¬
Ôòk1k2=$\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$•$\frac{{y}_{2}+{y}_{1}}{{x}_{2}+{x}_{1}}$=$\frac{{{y}_{2}}^{2}-{{y}_{1}}^{2}}{{{x}_{2}}^{2}-{{x}_{1}}^{2}}$=-$\frac{1}{4}$£¬
¼´k1k2Ϊ¶¨Öµ-$\frac{1}{4}$£®
¢Ú|AM|=|BM|£¬¿ÉµÃOM¡Íl£¬
µ±Ö±ÏßlµÄбÂʲ»´æÔÚ£¬¿ÉµÃl£ºx=0£¬ÔòMΪÍÖÔ²µÄ³¤ÖáµÄ¶Ëµã£¬
¼´ÓС÷ABMµÄÃæ»ýΪab=2£»
ÉèÖ±ÏßlµÄ·½³ÌΪy=kx£¬ÔòOMµÄ·½³ÌΪy=-$\frac{1}{k}$x£¬
ÓÉ$\left\{\begin{array}{l}{y=kx}\\{{x}^{2}+4{y}^{2}=4}\end{array}\right.$½âµÃx=¡À$\frac{2}{\sqrt{1+4{k}^{2}}}$£¬y=¡À$\frac{2k}{\sqrt{1+4{k}^{2}}}$£¬
¼´ÓÐA£¨$\frac{2}{\sqrt{1+4{k}^{2}}}$£¬$\frac{2k}{\sqrt{1+4{k}^{2}}}$£©£¬B£¨-$\frac{2}{\sqrt{1+4{k}^{2}}}$£¬-$\frac{2k}{\sqrt{1+4{k}^{2}}}$£©£¬
½«k»»Îª-$\frac{1}{k}$£¬¿ÉÉèM£¨$\frac{2}{\sqrt{1+\frac{4}{{k}^{2}}}}$£¬$\frac{-\frac{2}{k}}{\sqrt{1+\frac{4}{{k}^{2}}}}$£©£¬
Ôò¡÷ABMµÄÃæ»ýΪS=$\frac{1}{2}$|OM|•|AB|=|OM|•|OA|
=$\sqrt{\frac{4£¨1+{k}^{2}£©}{1+4{k}^{2}}}$•$\sqrt{\frac{4£¨1+\frac{1}{{k}^{2}}£©}{1+\frac{4}{{k}^{2}}}}$=4$\sqrt{\frac{2+{k}^{2}+\frac{1}{{k}^{2}}}{17+4£¨{k}^{2}+\frac{1}{{k}^{2}}£©}}$£¬
Éèt=k2+$\frac{1}{{k}^{2}}$¡Ý2£¬ÔòS=4$\sqrt{\frac{2+t}{17+4t}}$=4$\sqrt{\frac{1}{4+\frac{9}{t+2}}}$¡Ý4$\sqrt{\frac{1}{4+\frac{9}{4}}}$=$\frac{8}{5}$£®
×ÛÉϿɵ㬵±k=¡À1¼´Ö±ÏßlµÄ·½³ÌΪy=¡Àx£¬¡÷ABMµÄÃæ»ýÈ¡µÃ×îСֵ$\frac{8}{5}$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌµÄÇ󷨣¬×¢ÒâÔËÓÃÀëÐÄÂʹ«Ê½ºÍÅ×ÎïÏßµÄ×¼Ïß·½³Ì£¬¿¼²éÖ±ÏßµÄбÂʹ«Ê½µÄÔËÓú͵ãÂú×ãÍÖÔ²·½³Ì£¬Í¬Ê±¿¼²é»»Ôª·¨ºÍ»ù±¾²»µÈʽµÄÔËÓãºÇó×îÖµ£¬¿¼²é»¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑÖªÃüÌâp£ºÈôx£¨x-1£©¡Ù0£¬Ôòx¡Ù0ÇÒx¡Ù1£»ÃüÌâq£ºÈôa£¾b£¬Ôòac£¾bc£®ÔòÏÂÁÐÑ¡ÏîÖÐÊÇÕæÃüÌâµÄÊÇ£¨¡¡¡¡£©
A£®p¡ÅqB£®©Vp¡ÅqC£®©Vp¡ÄqD£®p¡Äq

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªº¯Êýf£¨x£©=$\frac{1}{2}$x2-£¨a+1£©x+alnx£¨a¡ÊR£©£®
£¨1£©µ±a=$\frac{1}{2}$£¬Çóy=f£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©ÌÖÂÛº¯Êýy=f£¨x£©ÁãµãµÄ¸öÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÒÑÖªº¯Êýf£¨x£©=x3-3ax+bµÄµ¥µ÷µÝ¼õÇø¼äΪ£¨-1£¬1£©£¬Æä¼«Ð¡ÖµÎª2£¬Ôòf£¨x£©µÄ¼«´óÖµÊÇ6£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖª¡÷ABCµÄ±ßAB³¤Îª4£¬ÈôBC±ßÉϵÄÖÐÏßΪ¶¨³¤3£¬Çó¶¥µãCµÄ¹ì¼£·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªº¯Êýf£¨x£©=ax3+bx2+cxµÄµ¼º¯ÊýΪh£¨x£©£¬f£¨x£©µÄͼÏóÔڵ㣨-2£¬f£¨-2£©£©´¦µÄÇÐÏß·½³ÌΪ3x-y+4=0£¬ÇÒh¡ä£¨-$\frac{2}{3}$£©=0£®
£¨1£©Çóº¯Êýf£¨x£©µÄ½âÎöʽ£»
£¨2£©ÈôÖ±Ïßy=xÊǺ¯Êýg£¨x£©=$\frac{2k{e}^{x}}{{x}^{2}+2x+2}$f£¨x£©µÄͼÏóµÄÒ»ÌõÇÐÏߣ¬ÇókµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÎªÍƹãÕÄÖÝ¡°Èý±¦¡±£¬Ä³É̳¡ÍƳö¡°Ôҽ𵰡±´ÙÏú»î¶¯£¬µ¥±Ê¹ºÂú50Ôª¿ÉÒÔÍæÒ»´Î¡°Ôҽ𵰡±ÓÎÏ·£¬Ã¿´ÎÓÎÏ·¿ÉÒÔÔÒÁ½¸ö½ðµ°£¬Ã¿ÔÒÒ»¸ö½ðµ°¿ÉÒԵȿÉÄܵصõ½¡°Ë®ÏÉ»¨¿¨Æ¬¡±£¬¡°Æ¬×Ðñ¥¿¨Æ¬¡±ºÍ¡°°Ë±¦Ó¡Ä࿨Ƭ¡±ÖеÄÒ»ÕÅ£¬Èç¹ûÒ»´ÎÓÎÏ·ÖпÉÒԵõ½ÏàͬµÄ¿¨Æ¬£¬ÄÇô¸ÃÉ̳¡ÔùËÍÒ»·Ý½±Æ·£¬ÔòÍæÒ»´Î¸ÃÓÎÏ·¿ÉÒÔ»ñÔùÒ»·Ý½±Æ·µÄ¸ÅÂÊÊÇ$\frac{1}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®Èô¼×ÒÒÁ½ÈË´ÓA£¬B£¬C£¬D£¬E£¬FÁùÃſγÌÖÐÑ¡ÐÞÈýÃÅ£¬Èô¼×²»Ñ¡ÐÞA£¬ÒÒ²»Ñ¡ÐÞF£¬Ôò¼×ÒÒÁ½ÈËËùÑ¡Ð޿γÌÖÐÇ¡ÓÐÁ½ÃÅÏàͬµÄÑ¡·¨ÓУ¨¡¡¡¡£©
A£®42ÖÖB£®72ÖÖC£®84ÖÖD£®144ÖÖ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®¶ÔÓÚn¡ÊN*£¬½«n±íʾΪn=a0¡Á2k+a1¡Á2k-1+a2¡Á2k-2+¡­+ak-1¡Á21+ak¡Á20£¬µ±i=0ʱ£¬a1=1£¬µ±1¡Üi¡Ükʱ£¬a1Ϊ0»ò1£¬¼ÇI£¨n£©ÎªÉÏÊö±íʾÖУ¬a1Ϊ0µÄ¸öÊý£¬ÀýÈç5=1¡Á22+0¡Á21+1¡Á20£¬¹ÊI£¨5£©=1£¬ÔòI£¨65£©=5£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸