| A. | 2$\sqrt{3}$ | B. | $\frac{4\sqrt{3}}{3}$ | C. | 2$\sqrt{3}$或$\frac{4\sqrt{3}}{3}$ | D. | $\sqrt{6}$+$\sqrt{2}$ |
分析 由题意画出图象,由图和题意分两种情况,分别根据余弦定理求出内角的余弦值,由内角的范围和特殊角的三角函数值求出角的大小,由正弦定理求出边OA的值,由点A的坐标求出a的值.
解答 解:由题意画出图象:![]()
(1)当OA:0B:AB=2$\sqrt{3}$:2$\sqrt{2}$:($\sqrt{6}$-$\sqrt{2}$)时,
则cos∠OBA=$\frac{(2\sqrt{2})^{2}+(\sqrt{6}-\sqrt{2})^{2}-(2\sqrt{3})^{2}}{2×2\sqrt{2}×(\sqrt{6}-\sqrt{2})}$
=$\frac{4-4\sqrt{3}}{8(\sqrt{3}-1)}$=$-\frac{1}{2}$,
因为∠OBA是内角,则∠OBA=120°,
cos∠OAB=$\frac{{(2\sqrt{3})}^{2}+{(\sqrt{6}-\sqrt{2})}^{2}-{(2\sqrt{2})}^{2}}{2×2\sqrt{3}×(\sqrt{6}-\sqrt{2})}$
=$\frac{12-4\sqrt{3}}{4\sqrt{3}(\sqrt{6}-\sqrt{2})}$=$\frac{3-\sqrt{3}}{\sqrt{3}•\sqrt{2}•(\sqrt{3}-1)}$=$\frac{\sqrt{2}}{2}$,
因为∠OAB是内角,则∠OAB=45°,
在△OAB中,由正弦定理得$\frac{OB}{sin∠OAB}=\frac{OA}{sin∠OBA}$,
则OB=$\frac{OA•sin∠OAB}{sin∠OBA}$=$\frac{\sqrt{{2}^{2}+(2\sqrt{3})^{2}}×\frac{\sqrt{2}}{2}}{\frac{\sqrt{3}}{2}}$=$\frac{4\sqrt{6}}{3}$,
因B(a,a),则$\sqrt{2}$a=$\frac{4\sqrt{6}}{3}$,解得a=$\frac{4\sqrt{3}}{3}$,
(2)当OB:0A:AB=2$\sqrt{3}$:2$\sqrt{2}$:($\sqrt{6}$-$\sqrt{2}$)时,
则cos∠OAB=$\frac{(2\sqrt{2})^{2}+(\sqrt{6}-\sqrt{2})^{2}-(2\sqrt{3})^{2}}{2×2\sqrt{2}×(\sqrt{6}-\sqrt{2})}$
=$\frac{4-4\sqrt{3}}{8(\sqrt{3}-1)}$=$-\frac{1}{2}$,
因为∠OAB是内角,则∠OAB=120°,
cos∠OBA=$\frac{{(2\sqrt{3})}^{2}+{(\sqrt{6}-\sqrt{2})}^{2}-{(2\sqrt{2})}^{2}}{2×2\sqrt{3}×(\sqrt{6}-\sqrt{2})}$
=$\frac{12-4\sqrt{3}}{4\sqrt{3}(\sqrt{6}-\sqrt{2})}$=$\frac{3-\sqrt{3}}{\sqrt{3}•\sqrt{2}•(\sqrt{3}-1)}$=$\frac{\sqrt{2}}{2}$,
因为∠OBA是内角,则∠OBA=45°,
在△OAB中,由正弦定理得$\frac{OB}{sin∠OAB}=\frac{OA}{sin∠OBA}$,
则OB=$\frac{OA•sin∠OAB}{sin∠OBA}$=$\frac{\sqrt{{2}^{2}+{(2\sqrt{3})}^{2}}×\frac{\sqrt{3}}{2}}{\frac{\sqrt{2}}{2}}$=2$\sqrt{6}$,
因B(a,a),则$\sqrt{2}$a=2$\sqrt{6}$,解得a=2$\sqrt{3}$,
综上可得,a的值是$\frac{4\sqrt{3}}{3}$或2$\sqrt{3}$
故选C.
点评 本题考查了正弦、余弦定理的综合应用,注意内角的范围,考查分类讨论思想,化简、计算能力.
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-$\frac{1}{2}$,0) | B. | (-∞,$-\frac{1}{4}$] | C. | [-1,-$\frac{1}{4}$] | D. | (-∞,-1] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\sqrt{5}$ | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com