分析 (1)根据函数奇偶性的性质即可求函数f(x)的解析式;
(2)若f(a-1)<-1,将不等式进行转化即可求实数a的取值范围
解答 解:(1)令x>0,则-x<0,f(-x)=log${\;}_{\frac{1}{2}}$(x+1)=f(x)
∴x>0时,f(x)=log${\;}_{\frac{1}{2}}$(x+1),
则f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}(x+1)(x>0)}\\{lo{g}_{\frac{1}{2}}(-x+1)(x≤0)}\end{array}\right.$.
(2)(Ⅲ)∵f(x)=log${\;}_{\frac{1}{2}}$(-x+1)在(-∞,0]上为增函数,
∴f(x)在(0,+∞)上为减函数
∵f(a-1)<-1=f(1)
∴|a-1|>1,
∴a>2或a<0.
点评 本题主要考查函数解析式的求解以及不等式的求解,根据函数奇偶性的性质求出函数的解析式是解决本题的关键
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{3}$ | B. | $\frac{4\sqrt{3}}{3}$ | C. | 2$\sqrt{3}$或$\frac{4\sqrt{3}}{3}$ | D. | $\sqrt{6}$+$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com