精英家教网 > 高中数学 > 题目详情
4.若{an}为等差数列,Sn为其前n项和,若a1>0,d<0,S4=S8,则Sn>0成立的最大自然数n为(  )
A.10B.11C.12D.13

分析 S4=S8,利用求和公式可得:2a1+11d=0,a6+a7=0,又a1>0,d<0,可得a6>0,a7<0.利用求和公式即可得出.

解答 解:∵S4=S8
∴$4{a}_{1}+\frac{4×3}{2}$d=8a1+$\frac{8×7}{2}$d,化为:2a1+11d=0,∴a1+5d+a1+6d=a6+a7=0,
∵a1>0,d<0,∴a6>0,a7<0.
∴S11=$\frac{11({a}_{1}+{a}_{11})}{2}$=11a6>0.S12=$\frac{12({a}_{1}+{a}_{12})}{2}$=6(a6+a7)=0,
则Sn>0成立的最大自然数n为11.
故选:B.

点评 本题考查了等差数列的通项公式与求和公式及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.计算81+891+8991+89991+…+8$\underbrace{99…99}_{n-1个9}$1=10n+1-9n-10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若向量$\overrightarrow{a}$=(1,1,2),$\overrightarrow{b}$=(2,-1,2),则cos<$\overrightarrow{a}$,$\overrightarrow{b}$>=(  )
A.3B.$\frac{5\sqrt{6}}{18}$C.$\frac{2}{55}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.现有五个球分别记为A,B,C,D,E,随机放进三个盒子,每个盒子只能放一个球,则C或E在盒中的概率是(  )
A.$\frac{2}{5}$B.$\frac{3}{5}$C.$\frac{3}{10}$D.$\frac{9}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列有关命题:①设m∈R,命题“若a>b,则am2>bm2”的逆否命题为假命题;②命题p:?α,β∈R,tan(α+β)=tanα+tanβ的否定¬p:?α,β∈R,tan(α+β)≠tanα+tanβ;③设a,b为空间任意两条直线,则“a∥b”是“a与b没有公共点”的充要条件.其中正确的是(  )
A.①②B.②③C.①③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.计算:
(1)解方程:2x2-4x-6=0;
(2)解方程:(x-2)2=8-x;
(3)$\sqrt{\frac{25}{9}}$+($\frac{27}{64}$)${\;}^{-\frac{1}{3}}$-π0
(4)lg$\frac{1}{2}$-lg$\frac{5}{8}$+lg12.5-log89•log98.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.过P(2,0)且与直线x-2y+3=0平行的直线方程为2y-x+2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.过抛物线y2=2px的焦点F作直线l交抛物线于A,B两点,O为坐标原点,则△OAB的形状为(  )
A.锐角三角形B.直角三角形C.钝角三角形D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.对于函数f(x) 若存在常数s,使得对定义域内的每一个x的值,都有f(x)=-f(2s-x),则称f(x)为“和谐函数”,给出下列函数①f(x)=$\frac{1}{x+1}$  ②f(x)=(x-1)2  ③f(x)=x3+x2+1   ④f(x)=xcosx,其中所有“和谐函数”的序号是(  )
A.①③B.②③C.①④D.①③④

查看答案和解析>>

同步练习册答案