精英家教网 > 高中数学 > 题目详情
11.已知△ABC的内角A,B,C所对的边分别为a,b,c,且a=2,b=3,tanB=3,则sinA的值为$\frac{\sqrt{10}}{5}$.

分析 由已知利用同角三角函数基本关系式可求sinB,进而利用正弦定理即可计算得解.

解答 解:∵tanB=$\frac{sinB}{cosB}$=3,sin2B+cos2B=1,
∴解得:$sinB=\frac{{3\sqrt{10}}}{10}$,
又∵a=2,b=3,
∴由正弦定理可得$\frac{2}{sinA}=\frac{3}{{\frac{{3\sqrt{10}}}{10}}}$,
∴解得:$sinA=\frac{{\sqrt{10}}}{5}$.
故答案为:$\frac{\sqrt{10}}{5}$.

点评 本题主要考查了同角三角函数基本关系式,正弦定理在解三角形中的综合应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.设数列{an}满足an+1=an2-nan+1,n=1,2,3,….
(1)当a1=2时,求a2,a3,a4,并由此猜想出{an}的一个通项公式;
(2)当a1≥3时,用数学归纳法证明对所有n≥1,有an≥n+2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知Sn是等差数列{an}的前n项和,且s6>s7>s5,给出下列五个命题:①d>0;②S11>0;③S12<0;④数列{Sn}中的最大项为S11;⑤|a5|>|a7|.其中正确命题的个数为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.若定义在R上的函数y=f(x)满足:对于任意实数x,y,总有f(x+y)+f(x-y)=2f(x)f(y)恒成立,我们称f(x)为“类余弦型”函数.
(1)已知f(x)为“类余弦型”函数,且$f(1)=\frac{5}{4}$,求f(0)和f(2)的值;
(2)在(1)的条件下,定义数列an=2f(n+1)-f(n)(n=1,2,3…),求${log_2}\frac{a_1}{3}+{log_2}\frac{a_2}{3}+…+{log_2}\frac{{{a_{2017}}}}{3}$的值;
(3)若f(x)为“类余弦型”函数,且对于任意非零实数t,总有f(t)>1,证明:函数f(x)为偶函数;设有理数x1,x2满足|x1|<|x2|,判断f(x1)和f(x2)的大小关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.有以下结论:
①已知p3+q3=2,求证p+q≤2,用反证法证明时,可假设p+q≥2;
②已知a,b∈R,|a|+|b|<1,求证方程x2+ax+b=0的两根的绝对值都小于1,用反证法证明时可假设方程有一根x1的绝对值大于或等于1,即假设|x1|≥1.
下列说法中正确的是(  )
A.①与②的假设都错误B.①与②的假设都正确
C.①的假设正确;②的假设错误D.①的假设错误;②的假设正确

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,正方体ABCD-A1B1C1D1棱长为1.
(1)求证:BD1⊥平面ACB1
(2)求直线BA1与平面A1C1D1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知Sn为等差数列{an}的前n项和,a1=8,S10=-10.
(Ⅰ)求an,Sn
(Ⅱ)设Tn=|a1|+|a2|+…+|an|,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.分别计算31+51,32+52,33+53,34+54,35+55,…,并根据计算的结果,猜想32017+52017的末位数字为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=x2(2x-2-x),则不等式f(2x+1)+f(1)<0的解集是(  )
A.$({-∞,-\frac{1}{2}})$B.(-∞,-1)C.$({-\frac{1}{2},+∞})$D.(-1,+∞)

查看答案和解析>>

同步练习册答案