分析 (1)分别取n=2,3,4依次计算得出,猜想:an=n+1;
(2)利用数学归纳法证明即可.
解答 解:(1)由a1=2,则a2=a12-a1+1=4-2+1=3,
则a3=a22-2a2+1=9-6+1=4,
a4=a32-3a3+1=16-12+1=5.
猜想:an=n+1.
(2)证明:当n=1时,a1≥3=1+2,不等式成立;
假设n=k(k≥1)时不等式成立,即ak≥k+2,
则ak+1=ak2-kak+1=ak(ak-k)+1≥(k+2)(k+2-k)+1=2k+5>k+3,
即n=k+1时,不等式仍成立.
综上,对于所有n≥1,都有an≥n+2.
点评 本题考查了利用数学归纳法证明数列的通项公式,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{BO}=-\frac{3}{4}\overrightarrow{AB}+\frac{1}{4}\overrightarrow{AC}$ | B. | $\overrightarrow{BO}=-\frac{1}{4}\overrightarrow{AB}+\frac{1}{4}\overrightarrow{AC}$ | C. | $\overrightarrow{BO}=\frac{3}{4}\overrightarrow{AB}-\frac{1}{4}\overrightarrow{AC}$ | D. | $\overrightarrow{BO}=-\frac{1}{2}\overrightarrow{AB}-\frac{1}{4}\overrightarrow{AC}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第62行第2列 | B. | 第64行第64列 | C. | 第63行第2列 | D. | 第64行第1列 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com