精英家教网 > 高中数学 > 题目详情
13.已知数列{an}是首项为2的等差数列,数列{bn}是公比为2的等比数列,且满足a2+b3=7,a4+b5=21.
(1)求数列{an}与{bn}的通项;
(2)令${c_n}=\frac{a_n}{b_n}$,求数列{cn}的前n项和Sn

分析 (1)由题意可知根据等差数列及等比数列的通项公式,列方程组,即可求得求得{an}的公差为d,数列{bn}的首项为b1,即可求得数列{an}与{bn}的通项;
(2)由(1)求得数列{cn}的通项公式,利用“错位相减法”即可求得数列{cn}的前n项和Sn

解答 解:(1)设等差数列{an}的公差为d,等比数列{bn}的首项为b1
由$\left\{\begin{array}{l}{{a}_{1}+d+{b}_{1}{q}^{2}=7}\\{{a}_{1}+3d+{b}_{1}{q}^{4}=21}\end{array}\right.$,整理得:$\left\{\begin{array}{l}{4{b}_{1}+d=5}\\{16{b}_{1}+3d=19}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{d=1}\\{{b}_{1}=1}\end{array}\right.$,
an=a1+(n-1)d=n+1,bn=b1qn-1=2n-1
∴数列{an}的通项公式an=n+1,{bn}的通项公式bn=2n-1
(2)由(1)可知${c_n}=\frac{a_n}{b_n}$=$\frac{n+1}{{2}^{n-1}}$,
数列{cn}的前n项和Sn,Sn=$\frac{2}{{2}^{0}}$+$\frac{3}{{2}^{1}}$+…+$\frac{n+1}{{2}^{n-1}}$,①
则$\frac{1}{2}$Sn=$\frac{2}{{2}^{1}}$+$\frac{3}{{2}^{2}}$+…+$\frac{n}{{2}^{n-1}}$+$\frac{n+1}{{2}^{n}}$,②
①-②整理得:$\frac{1}{2}$Sn=2+($\frac{1}{{2}^{1}}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n-1}}$)-$\frac{n+1}{{2}^{n}}$,
=3-$\frac{n+3}{{2}^{n}}$,
∴Sn=6-$\frac{n+3}{{2}^{n-1}}$,
数列{cn}的前n项和Sn,Sn=6-$\frac{n+3}{{2}^{n-1}}$.

点评 本题考查等比数列及等比数列通项公式,考查“错位相减法”求得数列的通项公式,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知A、B分别是椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的长轴与短轴的一个端点,E、F是椭圆左、右焦点,以E点为圆心3为半径的圆与以F点为圆心1为半径的圆的交点在椭圆C上,且|AB|=$\sqrt{7}$.
(1)求椭圆C的方程;
(2)若直线ME与x轴不垂直,它与C的另一个交点为N,M′是点M关于x轴的对称点,试判断直线NM′是否过定点,如果过定点,求出定点坐标,如果不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)化简:$\frac{{tan(3π-α)cos(2π-α)sin(-α+\frac{3π}{2})}}{{cos(-α-π)sin(-π+α)cos(α+\frac{5π}{2})}}$;
(2)已知$tanα=\frac{1}{4}$,求$\frac{1}{{2{{cos}^2}α-3sinαcosα}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设数列{an}满足an+1=an2-nan+1,n=1,2,3,….
(1)当a1=2时,求a2,a3,a4,并由此猜想出{an}的一个通项公式;
(2)当a1≥3时,用数学归纳法证明对所有n≥1,有an≥n+2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.从只有3张中奖的10张彩票中不放回随机逐张抽取,设X表示直至抽到中奖彩票时的次数,则P(X=4)=$\frac{7}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知$f(x)=a{sin^3}x+b\root{3}{x}{cos^3}x+4(a,b∈R),且f(sin10°)=5$,则f(cos100°)=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设f(x)=xex,若f'(x0)=0,则x0=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知Sn是等差数列{an}的前n项和,且s6>s7>s5,给出下列五个命题:①d>0;②S11>0;③S12<0;④数列{Sn}中的最大项为S11;⑤|a5|>|a7|.其中正确命题的个数为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知Sn为等差数列{an}的前n项和,a1=8,S10=-10.
(Ⅰ)求an,Sn
(Ⅱ)设Tn=|a1|+|a2|+…+|an|,求Tn

查看答案和解析>>

同步练习册答案