分析 (1)利用诱导公式化简求解即可.
(2)通过“1”的代换,利用同角三角函数基本关系式转化求解即可.
解答 解:(1)原式=$\frac{-tanα•cosα•(-cosα)}{-cosα•(-sinα)•(-sinα)}=-\frac{1}{sinα}$.
(2)因为$\frac{1}{{2{{cos}^2}α-3sinαcosα}}=\frac{{{{cos}^2}α+{{sin}^2}α}}{{2{{cos}^2}α-3sinαcosα}}=\frac{{1+{{tan}^2}α}}{2-3tanα}$
所以$\frac{1}{{2{{cos}^2}α-3sinαcosα}}=\frac{{1+\frac{1}{16}}}{{2-\frac{3}{4}}}=\frac{17}{20}$.
点评 本题考查三角函数的化简求值,诱导公式的应用,考查计算能力.
科目:高中数学 来源: 题型:选择题
| A. | 26 | B. | 31 | C. | 36 | D. | 37 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0.49 | B. | 0.48 | C. | 0.47 | D. | 0.46 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{BO}=-\frac{3}{4}\overrightarrow{AB}+\frac{1}{4}\overrightarrow{AC}$ | B. | $\overrightarrow{BO}=-\frac{1}{4}\overrightarrow{AB}+\frac{1}{4}\overrightarrow{AC}$ | C. | $\overrightarrow{BO}=\frac{3}{4}\overrightarrow{AB}-\frac{1}{4}\overrightarrow{AC}$ | D. | $\overrightarrow{BO}=-\frac{1}{2}\overrightarrow{AB}-\frac{1}{4}\overrightarrow{AC}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 学校 | A | B | C | D |
| 语文(x分) | 118 | 120 | 114 | 112 |
| 数学 (y分) | 116 | 123 | 114 | 119 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第62行第2列 | B. | 第64行第64列 | C. | 第63行第2列 | D. | 第64行第1列 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com