精英家教网 > 高中数学 > 题目详情
4.(1)化简:$\frac{{tan(3π-α)cos(2π-α)sin(-α+\frac{3π}{2})}}{{cos(-α-π)sin(-π+α)cos(α+\frac{5π}{2})}}$;
(2)已知$tanα=\frac{1}{4}$,求$\frac{1}{{2{{cos}^2}α-3sinαcosα}}$的值.

分析 (1)利用诱导公式化简求解即可.
(2)通过“1”的代换,利用同角三角函数基本关系式转化求解即可.

解答 解:(1)原式=$\frac{-tanα•cosα•(-cosα)}{-cosα•(-sinα)•(-sinα)}=-\frac{1}{sinα}$.
(2)因为$\frac{1}{{2{{cos}^2}α-3sinαcosα}}=\frac{{{{cos}^2}α+{{sin}^2}α}}{{2{{cos}^2}α-3sinαcosα}}=\frac{{1+{{tan}^2}α}}{2-3tanα}$
所以$\frac{1}{{2{{cos}^2}α-3sinαcosα}}=\frac{{1+\frac{1}{16}}}{{2-\frac{3}{4}}}=\frac{17}{20}$.

点评 本题考查三角函数的化简求值,诱导公式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.高三(15)班共有学生60人,现根据座号,用系统抽样的方法,抽取一个容量为5的样本,已知3号,15号,45号,53号同学在样本中,那么样本中还有一个同学座号不能是(  )
A.26B.31C.36D.37

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某校高考数学成绩ξ近似地服从正态分布N(100,52),且P(ξ<110)=0.96,则P(90<ξ<100)的值为(  )
A.0.49B.0.48C.0.47D.0.46

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设D为△ABC中BC边上的中点,且O为AD边的中点,则(  )
A.$\overrightarrow{BO}=-\frac{3}{4}\overrightarrow{AB}+\frac{1}{4}\overrightarrow{AC}$B.$\overrightarrow{BO}=-\frac{1}{4}\overrightarrow{AB}+\frac{1}{4}\overrightarrow{AC}$C.$\overrightarrow{BO}=\frac{3}{4}\overrightarrow{AB}-\frac{1}{4}\overrightarrow{AC}$D.$\overrightarrow{BO}=-\frac{1}{2}\overrightarrow{AB}-\frac{1}{4}\overrightarrow{AC}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.自2017年2月底,90多所自主招生试点高校将陆续出台2017年自主招生简章,怀化市某学校高三年级为了提高学生自主招生考试的通过率,对A、B、C、D四所国内知名大学2016年自主招生考试的语文和数学的控分做了如下调查:
学校ABCD
语文(x分)118120114112
数学 (y分)116123114119
(Ⅰ)依据上表中的数据用最小二乘法求数学控分$\hat y$关于语文控分x的线性回归方程$\hat y=\hat bx+\hat a$及当某高校自主招生考试语文控分为110分时,预测该校的数学控分.
(Ⅱ)依据调查表,怀化市的这所学校从A、B、C、D四所大学任选两所,求选出的这两所学校的语文和数学控分都低于120分的概率.
(附:线性回归方程$\hat y=\hat bx+\hat a$中,$\left\{\begin{array}{l}\hat b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}\\ \hat a=\overline y-\hat b×\overline x\end{array}\right.$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.把正整数按“f(x)”型排成了如图所示的三角形数表,第f(x)行有f(x)个数,对于第f(x)行按从左往右的顺序依次标记第1列,第2列,…,第f(x)列(比如三角形数表中12在第5行第4列,18在第6行第3列),则三角形数表中2017在(  )
A.第62行第2列B.第64行第64列C.第63行第2列D.第64行第1列

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,O为坐标原点,点P(1,$\frac{\sqrt{2}}{2}$)在椭圆上,连接PF1交y轴于点Q,点Q满足$\overrightarrow{PQ}$=$\overrightarrow{Q{F}_{1}}$.直线l不过原点O且不平行于坐标轴,l与椭圆C有两个交点A,B.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)已知点M($\frac{5}{4}$,0),若直线l过椭圆C的右焦点F2,证明:$\overrightarrow{MA}$•$\overrightarrow{MB}$为定值;
(Ⅲ)若直线l过点(0,2),设N为椭圆C上一点,且满足$\overrightarrow{OA}$+$\overrightarrow{OB}$=λ$\overrightarrow{ON}$,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}是首项为2的等差数列,数列{bn}是公比为2的等比数列,且满足a2+b3=7,a4+b5=21.
(1)求数列{an}与{bn}的通项;
(2)令${c_n}=\frac{a_n}{b_n}$,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(Ⅰ)求不等式-2<|x-1|-|x+2|<0的解集.
(Ⅱ)设a,b,均为正数,$h=max\{\frac{2}{{\sqrt{a}}},\frac{{{a^2}+{b^2}}}{{\sqrt{ab}}},\frac{2}{{\sqrt{b}}}\}$,证明:h≥2.

查看答案和解析>>

同步练习册答案