分析 (1)由椭圆的定义可知丨PE丨+丨PF丨=2a=4,则a=2,a2+b2=7,即可求得b2=3,即可求得椭圆方程;
(2)设直线MN的方程,代入椭圆方程,利用点斜式方程求得的NM′方程,y=0,利用韦达定理,即可求得x,则直线直线NM′是否过定点(-4,0).
解答 解:(1)由题意可知,丨PE丨+丨PF丨=2a=1+3=4,可得a=2,
又|AB|=$\sqrt{7}$,则a2+b2=7,
解得:b2=3,
椭圆的标准方程$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;
(2)设MN的方程x=ty-1,(t≠0),M(x1,y1),N(x2,y2),M′(-x1,-y1),
x1≠x2,y1+y2≠0,
∴$\left\{\begin{array}{l}{x=ty-1}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,整理得:(3t2+4)y2-6ty-9=0,
△=(-6t)2-4(-9)(3t2+4)=144t2+144>0,
则y1+y2=$\frac{6t}{3+4{t}^{2}}$,y1y2=-$\frac{9}{3{t}^{2}+4}$,
则直线M′N的方程y+y1=$\frac{{y}_{2}+{y}_{1}}{{x}_{2}-{x}_{1}}$(x-x1),
当y=0时,则x=$\frac{{y}_{1}({x}_{2}-{x}_{1})}{{y}_{2}+{y}_{1}}$+x2=$\frac{{y}_{1}{x}_{1}+{x}_{1}{y}_{2}}{{y}_{2}+{y}_{1}}$=$\frac{{y}_{1}(t{y}_{2}-1)+{y}_{2}(t{y}_{1}-1)}{{y}_{2}+{y}_{1}}$=$\frac{2t{y}_{1}{y}_{2}}{{y}_{1}+{y}_{2}}$-1=$\frac{\frac{-18t}{3{t}^{2}+4}}{\frac{6t}{3{t}^{2}+4}}$-1=-4,
则直线NM′是否过定点(-4,0).
点评 本题考查椭圆的标准方程,直线与椭圆的位置关系,考查韦达定理,直线的点斜式方程,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 26 | B. | 31 | C. | 36 | D. | 37 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0.49 | B. | 0.48 | C. | 0.47 | D. | 0.46 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{BO}=-\frac{3}{4}\overrightarrow{AB}+\frac{1}{4}\overrightarrow{AC}$ | B. | $\overrightarrow{BO}=-\frac{1}{4}\overrightarrow{AB}+\frac{1}{4}\overrightarrow{AC}$ | C. | $\overrightarrow{BO}=\frac{3}{4}\overrightarrow{AB}-\frac{1}{4}\overrightarrow{AC}$ | D. | $\overrightarrow{BO}=-\frac{1}{2}\overrightarrow{AB}-\frac{1}{4}\overrightarrow{AC}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com