精英家教网 > 高中数学 > 题目详情
11.函数y=$\frac{1}{2}$tan(2x+$\frac{π}{3}$)+1的图象的对称中心为($\frac{1}{4}kπ-\frac{π}{6}$,1),k∈Z..

分析 根据正切函数的性质可得答案.

解答 解:由正切函数的性质可得:2x+$\frac{π}{3}$=$\frac{π}{2}k$,k∈Z,
可得:x=$\frac{1}{4}kπ-\frac{π}{6}$,
函数y=$\frac{1}{2}$tan(2x+$\frac{π}{3}$)+1的图象的对称中心为($\frac{1}{4}kπ-\frac{π}{6}$,1),k∈Z.
故答案为:($\frac{1}{4}kπ-\frac{π}{6}$,1),k∈Z.

点评 本题主要考查正切函数的图象和性质.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知集合A={x|0<x<2},B={x|x2-1<0},则A∪B=(  )
A.(-1,1)B.(-1,2)C.(1,2)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,O为为AD上的一点,且AB⊥AD,CO⊥AD,AB=AO=$\frac{1}{3}$AD=$\frac{1}{2}$OC=1,OP=$\frac{1}{2}$CD,PA=$\sqrt{3}$.
(1)求证:PD⊥平面PAB;
(2)求平面PAB与平面PBC所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知向量$\vec a=({cos\frac{3}{2}x,sin\frac{3}{2}x}),\vec b=({cos\frac{x}{2},-sin\frac{x}{2}})$,且$x∈({0,\frac{π}{2}})$.
(1)求$\vec a•\vec b$及$|{\vec a+\vec b}|$;
(2)若$f(x)=\vec a•\vec b-2λ|{\vec a+\vec b}|$的最小值为$-\frac{3}{2}$,求正实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.z=3-4i,则复数z-|z|+(1-i)在复平面内的对应点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)是定义在R上的偶函数,若任意的x≥0,都有f(x+2)=-f(x),当x∈[0,1]时,f(x)=2x-1,则f(-2017)+f(2018)=(  )
A.1B.-1C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知A、B分别是椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的长轴与短轴的一个端点,E、F是椭圆左、右焦点,以E点为圆心3为半径的圆与以F点为圆心1为半径的圆的交点在椭圆C上,且|AB|=$\sqrt{7}$.
(1)求椭圆C的方程;
(2)若直线ME与x轴不垂直,它与C的另一个交点为N,M′是点M关于x轴的对称点,试判断直线NM′是否过定点,如果过定点,求出定点坐标,如果不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.二项式${({\frac{x}{4}-\frac{2}{{\sqrt{x}}}})^6}$的展开式中的常数项为15.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设数列{an}满足an+1=an2-nan+1,n=1,2,3,….
(1)当a1=2时,求a2,a3,a4,并由此猜想出{an}的一个通项公式;
(2)当a1≥3时,用数学归纳法证明对所有n≥1,有an≥n+2.

查看答案和解析>>

同步练习册答案