分析 (1)先根据向量的数量积和向量的模计算即可.
(2)由(1)知f(x)=cos2x-4λcosx=2cos2x-4λcosx-1,根据二次函数的性质分类讨论即可
解答 解:(1)$\vec a•\vec b=cos\frac{3}{2}xcos\frac{x}{2}-sin\frac{3}{2}xsin\frac{x}{2}=cos2x$
∵$\vec a+\vec b=({cos\frac{3}{2}x+cos\frac{x}{2},sin\frac{3}{2}x+sin\frac{x}{2}})$,
∴${|{\vec a+\vec b}|^2}={({cos\frac{3}{2}x+cos\frac{x}{2}})^2}+{({sin\frac{3}{2}x+sin\frac{x}{2}})^2}$=$2+2({cos\frac{3}{2}xcos\frac{x}{2}-sin\frac{3}{2}xsin\frac{x}{2}})$=2+2cos2x=4cos2x.
∵$x∈[{0,\frac{π}{2}}]$,∴cosx≥0,因此$|{\vec a+\vec b}|=2cosx$.
(2)由(1)知f(x)=cos2x-4λcosx=2cos2x-4λcosx-1,
∴f(x)=2(cosx-λ)2-1-2λ2,cosx∈[0,1],
①当0<λ<1时,当cosx=λ时,f(x)有最小值$-1-2{λ^2}=-\frac{3}{2}$,解得$λ=\frac{1}{2}$.
②当λ≥1时,当cosx=1时,f(x)有最小值$1-4λ=-\frac{3}{2}$,$λ=\frac{5}{8}$(舍去),综上可得$λ=\frac{1}{2}$.
点评 本题考查了向量的数量积和向量的模以及三角函数的化简和二次函数的性质,属于中档题
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1009}{1008}$ | B. | $\frac{2015}{1007}$ | C. | $\frac{2016}{2015}$ | D. | $\frac{2015}{2014}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 26 | B. | 31 | C. | 36 | D. | 37 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第62行第2列 | B. | 第64行第64列 | C. | 第63行第2列 | D. | 第64行第1列 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com