精英家教网 > 高中数学 > 题目详情
4.向量$\overrightarrow{AB}$对应复数-3+2i,则向量$\overrightarrow{BA}$所对应的复数为3-2i.

分析 根据向量复数的几何意义进行求解即可.

解答 解:向量$\overrightarrow{AB}$对应复数-3+2i,则向量$\overrightarrow{AB}$对应向量坐标为(-3,2),
则向量$\overrightarrow{BA}$所对应的坐标为(3,-2),
则定义的复数为3-2i,
故答案为:3-2i

点评 本题主要考查复数的几何意义的应用,根据复数的几何意义是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知数列{an}中${a_n}={({-1})^{\frac{{n({n+1})}}{2}}}({2n-1})$,设{an}的前n项和为Sn,则S101的值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若复数$\frac{a+3i}{1+2i}$(a∈R,i为虚数单位)是纯虚数,则实数a的值为(  )
A.-6B.13C.$\frac{3}{2}$D.$\sqrt{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=5x2+1(  )
A.在(0,+∞)内是增函数B.在(1,+∞)内是增函数
C.在(-∞,0)内是增函数D.在(-∞,1)内是增函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知向量$\vec a=({cos\frac{3}{2}x,sin\frac{3}{2}x}),\vec b=({cos\frac{x}{2},-sin\frac{x}{2}})$,且$x∈({0,\frac{π}{2}})$.
(1)求$\vec a•\vec b$及$|{\vec a+\vec b}|$;
(2)若$f(x)=\vec a•\vec b-2λ|{\vec a+\vec b}|$的最小值为$-\frac{3}{2}$,求正实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知平面向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-2,m),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则2$\overrightarrow{a}$+3$\overrightarrow{b}$等于(  )
A.(-5,-10)B.(-3,-6)C.(-4,-8)D.(-2,-4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)是定义在R上的偶函数,若任意的x≥0,都有f(x+2)=-f(x),当x∈[0,1]时,f(x)=2x-1,则f(-2017)+f(2018)=(  )
A.1B.-1C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}满足3Sn=(n+2)an(n∈N*),其中Sn为{an}的前n项和,a1=2.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)记数列$\left\{{\frac{1}{a_n}}\right\}$的前n项和为Tn是否存在无限集合M,使得当n∈M时,总有$|{{T_n}-1}|<\frac{1}{10}$成立?若存在,请找出一个这样的集合;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知各项为正数的数列{an},满足$\frac{1}{{{a_{n+1}}}}=\frac{1}{{{a_n}+1}}$,n∈N*,其中a1=1,Sn为其前n项的和.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列$\left\{{\left.{\frac{1}{S_n}}\right\}}\right.$的前n项和Tn

查看答案和解析>>

同步练习册答案