精英家教网 > 高中数学 > 题目详情
9.已知平面向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-2,m),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则2$\overrightarrow{a}$+3$\overrightarrow{b}$等于(  )
A.(-5,-10)B.(-3,-6)C.(-4,-8)D.(-2,-4)

分析 利用向量共线定理、坐标运算性质即可得出.

解答 解:∵$\overrightarrow{a}$∥$\overrightarrow{b}$,∴-4-m=0,解得m=-4.
则2$\overrightarrow{a}$+3$\overrightarrow{b}$=(2,4)+(-6,-12)=(-4,-8).
故选:C.

点评 本题考查了向量共线定理、坐标运算性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.如图,斜三棱柱ABC-A1B1C1中,侧面AA1B1B为菱形,底面△ABC是等腰直角三角形,∠BAC=90°,A1B⊥B1C.
(1)求证:直线AC⊥直线BB1
(2)若直线BB1与底面ABC成的角为60°,求二面角A-BB1-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{x-2}{x+2}$ex,g(x)=2lnx-ax(a∈R)
(1)讨论f(x)的单调性; 
(2)证明:当b∈[0,1)时.函数h(x)=$\frac{{e}^{x}-bx-b}{{x}^{2}}$(x>0)有最小值,记h(x)的最小值为φ(b),求φ(b)的值域; 
(3)若g(x)存在两个不同的零点x1,x2(x1<x2),求a的取值范围,并比较g′($\frac{{x}_{1}+2{x}_{2}}{3}$)与0的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.定义运算:$|\begin{array}{l}{{a}_{1}}&{{a}_{2}}\\{{a}_{3}}&{{a}_{4}}\end{array}|$=a1a4-a2a3,将函数f(x)=$|\begin{array}{l}{\sqrt{3}}&{sinωx}\\{1}&{cosωx}\end{array}|$(ω>0)的图象向左平移$\frac{2π}{3}$个单位,所得图象对应的函数为偶函数,则ω的最小值是(  )
A.$\frac{1}{4}$B.$\frac{5}{4}$C.$\frac{7}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.向量$\overrightarrow{AB}$对应复数-3+2i,则向量$\overrightarrow{BA}$所对应的复数为3-2i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知复数z1=2-3i,z2=$\frac{15-5i}{(2+i)^{2}}$.求:(1)z1+$\overline{{z}_{2}}$;(2)z1•z2;(3)$\frac{{z}_{1}}{{z}_{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知双曲线x2+$\frac{y^2}{{{b^2}-4}}$=1的焦点到渐近线的距离为2,则双曲线的渐近线方程为(  )
A.y=±$\frac{1}{2}$xB.y=±$\sqrt{3}$xC.y=±2xD.y=±$\frac{{\sqrt{3}}}{3}$x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{mx-n}{x}$-lnx,m,n∈R.
(Ⅰ)若函数f(x)在(2,f(2))处的切线与直线x-y=0平行,求实数n的值;
(Ⅱ)试讨论函数f(x)在区间[1,+∞)上最大值;
(Ⅲ)若n=1时,函数f(x)恰有两个零点x1,x2(0<x1<x2),求证:x1+x2>2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知-$\frac{π}{2}$<x<0,sinx+cosx=$\frac{1}{5}$.
(Ⅰ)求sinx-cosx的值;
(Ⅱ)求4sinxcosx-cos2x的值.

查看答案和解析>>

同步练习册答案