分析 (Ⅰ)求出函数的导数,根据f′(2)=1,求出n的值即可;
(Ⅱ)求出函数的导数,通过讨论n的范围,求出函数的单调区间,求出函数的最大值即可;
(Ⅲ)求出m=$\frac{1}{{x}_{1}}$+lnx1=$\frac{1}{{x}_{2}}$+lnx2,得到$\frac{{{x}_{2}-x}_{1}}{{{x}_{1}x}_{2}}$=ln$\frac{{x}_{2}}{{x}_{1}}$,设t=$\frac{{x}_{2}}{{x}_{1}}$>1,得到故x1+x2=x1(t+1)=$\frac{{t}^{2}-1}{tlnt}$,根据函数的单调性证明即可.
解答 解:(Ⅰ)由f′(x)=$\frac{n-x}{{x}^{2}}$,f′(2)=$\frac{n-2}{4}$,
由于函数f(x)在(2,f(2))处的切线与直线x-y=0平行,
故$\frac{n-2}{4}$=1,解得n=6.
(Ⅱ)f′(x)=$\frac{n-x}{{x}^{2}}$,(x>0),
由f′(x)<0时,x>n;f′(x)>0时,x<n,
所以①当n≤1时,f(x)在[1,+∞)上单调递减,
故f(x)在[1,+∞)上的最大值为f(1)=m-n;
②当n>1,f(x)在[1,n)上单调递增,在(n,+∞)上单调递减,
故f(x)在[1,+∞)上的最大值为f(n)=m-1-lnn;
(Ⅲ)证明:n=1时,f(x)恰有两个零点x1,x2,(0<x1<x2),
由f(x1)=$\frac{{mx}_{1}-1}{{x}_{1}}$-lnx1=0,f(x2)=$\frac{{mx}_{2}-1}{{x}_{2}}$-lnx2=0,
得m=$\frac{1}{{x}_{1}}$+lnx1=$\frac{1}{{x}_{2}}$+lnx2,
故$\frac{{{x}_{2}-x}_{1}}{{{x}_{1}x}_{2}}$=ln$\frac{{x}_{2}}{{x}_{1}}$,设t=$\frac{{x}_{2}}{{x}_{1}}$>1,lnt=$\frac{t-1}{{tx}_{1}}$,x1=$\frac{t-1}{tlnt}$,
故x1+x2=x1(t+1)=$\frac{{t}^{2}-1}{tlnt}$,
∴x1+x2-2=$\frac{2(\frac{{t}^{2}-1}{2t}-lnt)}{lnt}$,
记函数h(t)=$\frac{{t}^{2}-1}{2t}$-lnt,因h′(t)=$\frac{{(t-1)}^{2}}{{2t}^{2}}$>0,
∴h(t)在(1,+∞)递增,∵t>1,∴h(t)>h(1)=0,
又t=$\frac{{x}_{2}}{{x}_{1}}$>1,lnt>0,故x1+x2>2成立.
点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,考查不等式的证明,是一道综合题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-5,-10) | B. | (-3,-6) | C. | (-4,-8) | D. | (-2,-4) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com