精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=x-ax(a>0,且a≠1).
(1)当a=e,x取一切非负实数时,若$f(x)≤b-\frac{1}{2}{x^2}$,求b的范围;
(2)若函数f(x)存在极大值g(a),求g(a)的最小值.

分析 (1)问题转化为$b≥\frac{1}{2}{x^2}+x-{e^x}$恒成立,令g(x)=$\frac{1}{2}$x2+x-ex,根据函数的单调性求出b的范围即可;
(2)求出函数的导数,通过讨论a的范围,求出函数的单调区间,求出g(a)的表达式,根据函数的单调性求出g(a)的最小值即可.

解答 解:(1)当a=e时,f(x)=x-ex
原题分离参数得$b≥\frac{1}{2}{x^2}+x-{e^x}$恒成立,
令g(x)=$\frac{1}{2}$x2+x-ex,g′(x)=x+1-ex,g″(x)=1-ex<0,
故g′(x)在[0,+∞)递减,g′(x)<g′(0)=0,
故g(x)在[0,+∞)递减,
g(x)≤g(0)=-1,
故b≥-1;
(2)f'(x)=1-axlna,
①当0<a<1时,ax>0,lna<0,
所以f'(x)>0,所以f(x)在R上为单增函数,无极大值;
②当a>1时,设方程f'(x)=0的根为t,
则有${a^t}=\frac{1}{lna}$,即$t={log_a}\frac{1}{lna}=\frac{{ln\frac{1}{lna}}}{lna}$,
所以f(x)在(-∞,t)上为增函数,在(t,+∞)上为减函数,
所以f(x)的极大值为$f(t)=t-{a^t}=\frac{{ln\frac{1}{lna}}}{lna}-\frac{1}{lna}$,
即$g(a)=\frac{{ln\frac{1}{lna}}}{lna}-\frac{1}{lna}$,因为a>1,所以$\frac{1}{lna}>0$,
令$x=\frac{1}{lna}$则$\frac{{ln\frac{1}{lna}}}{lna}-\frac{1}{lna}=xlnx-x$,
设h(x)=xlnx-x,x>0,则$h'(x)=lnx+x•\frac{1}{x}-1=lnx$,
令h'(x)=0,得x=1,
所以h(x)在(0,1)上为减函数,在(1,+∞)上为增函数,
所以h(x)得最小值为h(1)=-1,
即g(a)的最小值为-1,
此时a=e.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,考查函数恒成立问题,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{x-2}{x+2}$ex,g(x)=2lnx-ax(a∈R)
(1)讨论f(x)的单调性; 
(2)证明:当b∈[0,1)时.函数h(x)=$\frac{{e}^{x}-bx-b}{{x}^{2}}$(x>0)有最小值,记h(x)的最小值为φ(b),求φ(b)的值域; 
(3)若g(x)存在两个不同的零点x1,x2(x1<x2),求a的取值范围,并比较g′($\frac{{x}_{1}+2{x}_{2}}{3}$)与0的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知双曲线x2+$\frac{y^2}{{{b^2}-4}}$=1的焦点到渐近线的距离为2,则双曲线的渐近线方程为(  )
A.y=±$\frac{1}{2}$xB.y=±$\sqrt{3}$xC.y=±2xD.y=±$\frac{{\sqrt{3}}}{3}$x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{mx-n}{x}$-lnx,m,n∈R.
(Ⅰ)若函数f(x)在(2,f(2))处的切线与直线x-y=0平行,求实数n的值;
(Ⅱ)试讨论函数f(x)在区间[1,+∞)上最大值;
(Ⅲ)若n=1时,函数f(x)恰有两个零点x1,x2(0<x1<x2),求证:x1+x2>2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合A={x||x-1|<1},B={x|x2-1<0},则A∪B=(  )
A.(-1,1)B.(-1,2)C.(1,2)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知数列{an}中,a1<0,an+1=$\frac{a_n}{{3{a_n}+1}}(n∈{N^*})$,数列{bn}满足:bn=nan(n∈N*),设Sn为数列{bn}的前n项和,当n=7时Sn有最小值,则a1的取值范围是$({-\frac{1}{18},-\frac{1}{21}})$ .

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积=$\frac{1}{2}×$(弦×矢+矢2),弧田(如图)由圆弧和其所对弦围城,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角$\frac{2π}{3}$,半径为6米的弧田,按照上述经验公式计算所得弧田面积约是($\sqrt{3}≈1.73$)(  )
A.16平方米B.18平方米C.20平方米D.25平方米

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知-$\frac{π}{2}$<x<0,sinx+cosx=$\frac{1}{5}$.
(Ⅰ)求sinx-cosx的值;
(Ⅱ)求4sinxcosx-cos2x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.为了解某地高中生的身高情况,研究小组在该地高中生中随机抽出30名高中生的身高统计成如图所示的茎叶图(单位:cm).
若身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“非高个子”.
(1)求众数和平均数
(2)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,再从这5人中选2人,那么至少有1人是“高个子”的概率是多少?

查看答案和解析>>

同步练习册答案