精英家教网 > 高中数学 > 题目详情
15.已知数列{an}中,a1<0,an+1=$\frac{a_n}{{3{a_n}+1}}(n∈{N^*})$,数列{bn}满足:bn=nan(n∈N*),设Sn为数列{bn}的前n项和,当n=7时Sn有最小值,则a1的取值范围是$({-\frac{1}{18},-\frac{1}{21}})$ .

分析 数列{an}中,a1<0,an+1=$\frac{a_n}{{3{a_n}+1}}(n∈{N^*})$,区倒数可得:$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=3,利用等差数列的通项公式可得:an=$\frac{{a}_{1}}{1+3{(n-1)a}_{1}}$.bn=nan=$\frac{n{a}_{1}}{1+3(n-1){a}_{1}}$,设Sn为数列{bn}的前n项和,当n=7时Sn有最小值,可得b7>0,b8<0.解出即可得出.

解答 解:数列{an}中,a1<0,an+1=$\frac{a_n}{{3{a_n}+1}}(n∈{N^*})$,
∴$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=3,
∴数列$\{\frac{1}{{a}_{n}}\}$是等差数列,公差为3.
∴$\frac{1}{{a}_{n}}$=$\frac{1}{{a}_{1}}$+3(n-1).
解得an=$\frac{{a}_{1}}{1+3{(n-1)a}_{1}}$.
∴bn=nan=$\frac{n{a}_{1}}{1+3(n-1){a}_{1}}$,
设Sn为数列{bn}的前n项和,当n=7时Sn有最小值,∴b7>0,b8<0.
∴$\frac{7{a}_{1}}{1+18{a}_{1}}$>0,$\frac{8{a}_{1}}{1+21{a}_{1}}$<0,
解得$-\frac{1}{18}<{a}_{1}<-\frac{1}{21}$.
则a1的取值范围是:$({-\frac{1}{18},-\frac{1}{21}})$.
故答案为:$({-\frac{1}{18},-\frac{1}{21}})$.

点评 本题考查了数列递推关系、等差数列的通项公式、数列的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.高二一班有A,B两个社会实践活动小组,每组七个人,现从每组中各选出一个人分别完成一项手工作品,每位成员完成作品所需要的时间(单位:小时)如下所示
A组:10,11,12,13,14,15,16;
B组:12,13,15,16,17,14,a
假设A、B两组每位成员被选出的可能性均等,从A组选出的人记为甲,从B组选出的人记为乙
(1)如果a=18,求甲所用时间比乙所用时间长的概率;
(2)如果a=14,设甲与乙所用时间都低于15,记甲与乙的所用时间的差的绝对值为X,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知随机变量ξ服从正态分布N(1,σ2),若P(ξ>2)=0.15,则P(0≤ξ≤1)=0.35.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.执行如图所示的程序框图,若输出x的值为127,则输入的正整数x的所有可能取值的个数为(  )
A.2B.5C.3D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x-ax(a>0,且a≠1).
(1)当a=e,x取一切非负实数时,若$f(x)≤b-\frac{1}{2}{x^2}$,求b的范围;
(2)若函数f(x)存在极大值g(a),求g(a)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在△ABC中,角A,B,C的对边分别为a,b,c,且2cos2$\frac{A-B}{2}$cosB-sin(A-B)sinB+cos(A+C)=-$\frac{3}{5}$.若a=8,b=$\sqrt{3}$,那么∠B=arcsin$\frac{\sqrt{3}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知平面直角坐标系内三点A、B、C在一条直线上,满足$\overrightarrow{OA}$=(-3,m+1),$\overrightarrow{OB}$=(n,3),$\overrightarrow{OC}$=(7,4),且$\overrightarrow{OA}⊥\overrightarrow{OB}$,其中O为坐标原点.
(1)求实数m,n的值;
(2)设△AOC的重心为G,且$\overrightarrow{OG}$=$\frac{2}{3}$$\overrightarrow{OB}$,求cos∠AOC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列函数中,既是偶函数又在(0,π)上单调递增的是(  )
A.y=tanxB.y=cos(-x)C.$y=-sin({\frac{π}{2}-x})$D.y=|tanx|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知向量$\overrightarrow a,\overrightarrow b$满足$|\overrightarrow a|=2$,$|\overrightarrow b|=3$,$\overrightarrow a•\overrightarrow b=2$,则$|\overrightarrow a-\overrightarrow b|$=3.

查看答案和解析>>

同步练习册答案